首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived ω-aminoaldehydes to the corresponding ω-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with β-nicotinamide adenine dinucleotide (NAD+) at 2.4 and 2.15 Å resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD+ as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD+ binding site. While the NAD+ binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into γ-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, β-alanine betaine and γ-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.  相似文献   

2.
The metabolic degradation of aldehydes is catalyzed by oxidoreductases from which aldehyde dehydrogenases (EC 1.2.1) comprise nonspecific or substrate-specific enzymes. The latter subset is represented, e.g., by NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs; EC 1.2.1.19) oxidizing a group of naturally occurring ω-aminoaldehydes including polyamine oxidation products. Recombinant isoenzymes from pea (PsAMADH1 and 2) and tomato (LeAMADH1 and 2) were subjected to kinetic measurements with synthetic aldehydes containing a nitrogenous heterocycle such as pyridinecarbaldehydes and their halogenated derivatives, (pyridinylmethylamino)-aldehydes, pyridinyl propanals and aldehydes derived from purine, 7-deazapurine and pyrimidine to characterize their substrate specificity and significance of the resulting data for in vivo reactions. The enzymatic production of the corresponding carboxylic acids was analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry. Although the studied AMADHs are largely homologous and supposed to have a very similar active site architecture, significant differences were observed. LeAMADH1 displayed the broadest specificity oxidizing almost all compounds followed by PsAMADH2 and 1. In contrast, LeAMADH2 accepted only a few compounds as substrates. Pyridinyl propanals were converted by all isoenzymes, usually better than pyridinecarbaldehydes and aldehydes with fused rings. The K (m) values for the best substrates were in the range of 10(-5)-10(-4)?M. Nevertheless, the catalytic efficiency values (V (max)/K (m)) reached only a very small fraction of that with 3-aminopropanal (except for LeAMADH1 activity with two pyridine-derived compounds). Docking experiments using the crystal structure of PsAMADH2 were involved to discuss differences in results with position isomers or alkyl chain homologs.  相似文献   

3.
The first primary structure of a plant aminoaldehyde dehydrogenase (AMADH, EC 1.2.1.19) is reported. The enzyme of pea (Pisum sativum) seedlings subjected to our study oxidises ω-aminoaldehydes to the corresponding ω-amino acids. Although pea does not accumulate betaine aldehyde as a compatible osmolyte, the N-terminal sequence of a purified pea AMADH resembles those of plant betaine aldehyde dehydrogenases (BADHs). On the basis of an anticipated pea AMADH homology to these enzymes, degenerated oligonucleotide primers were designed and used for PCR amplification. Two cDNA fragments were obtained in initial 5′ RACE experiments. Subsequent 5′and 3′ RACE performed with specific non-degenerated primers provided two putative cDNAs of the plant BADH family. Both encoded protein sequences (AMADH1 and AMADH2) are highly homologous to those of plant BADHs. They show 81% identity and 92% in mutual alignment. As a deduced product of the first cDNA, AMADH1 completely matches the N-terminal sequence of pea AMADH analysed previously by Edman degradation. AMADH 2 represents a putative AMADH or BADH that has not yet been isolated and characterised. We also tried to identify essential amino acid residues of a purified pea AMADH by both determination of its dissociation constants and evaluation of inhibition effects of specific modification reagents. From our results, it is clear that there are Cys (pK = 8.0) and Glu/Asp residues at the active site participating in the catalysis. This is in accordance with the presence of the conserved Glu and Cys active site regions of plant BADHs in both AMADH1 and AMADH2.  相似文献   

4.
According to our knowledge, this is the first purification method developed, enabling isolation of a homogeneous aminoaldehyde dehydrogenase (AMADH) from etiolated pea seedlings. The procedure involved initial purification with precipitants followed by three low pressure chromatographic steps. Partially purified enzyme was further subjected to fast protein liquid chromatography on a Mono Q column and to affinity-interaction chromatography on 5'-AMP Sepharose. Purity of the final enzyme preparation was checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and chromatofocusing. Pea AMADH exists as a tetramer of 230 kDa in the native state, a molecular mass of one subunit was determined as 57 kDa. The enzyme was found to be an acidic protein with pI 5.4. AMADH showed a broad substrate specificity utilising various aminoaldehydes (C3-C6) as substrates. The best substrate of pea AMADH was 3-aminopropionaldehyde, the enzyme also efficiently oxidised 4-aminobutyraldehyde and omega-guanidinoanalogues of the aminoaldehydes. Pea AMADH was inhibited by SH reagents, several elementary aldehydes and metal-binding agents. Although AMADH did not oxidise betaine aldehyde at all, the N-terminal amino acid sequence of the enzyme shows a high degree of homology with those of plant betaine aldehyde dehydrogenases (BADHs) of spinach, sugar beet and amaranth. Several conserved amino acids were found in comparison with BADH from cod liver of known crystal structure.  相似文献   

5.
NAD-dependent aminoaldehyde dehydrogenase (AMADH, EC 1.2.1.-) from Avena shoots was purified by DEAE Sephacel, hydroxyapatite, 5′-AMP Sepharose 4B, Mono Q, and TSK-GEL column chromatographies to homogeneity by the criterion of native PAGE. SDS–PAGE yielded a single band at a molecular mass of 55 kDa. IEF studies showed a band with a pI value of 5.3. In contrast to AMADHs from other species, the TSK-GEL chromatography showed that Avena AMADH exists as a monomer in the native state. The purified enzyme catalyzed the oxidations of 3-aminopropionaldehyde (APAL), 4-aminobutyraldehyde (ABAL) N-(3-aminopropyl)-4-aminobutyraldehyde (APBAL), and 4-guanidinobutyraldehyde (GBAL), but not of betaine aldehyde or indoleacetaldehyde. The K m values for APAL, ABAL, and GBAL were 1.5×10–6, 2.2×10–6, and 1.3×10–5 M, respectively. Although N-terminal amino acid sequence of Avena AMADH could not be determined due to a modification of the amino residue, the sequence of the fragment of AMADH cleaved by V8 protease showed greater similarity to the barley BADH than to the pea AMADH. Electronic Publication  相似文献   

6.
Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine catabolism. All so far characterized PAOs from monocotyledonous plants, such as the apoplastic maize PAO, oxidize spermine (Spm) and spermidine (Spd) to produce 1,3-diaminopropane, H(2)O(2), and an aminoaldehyde, and are thus considered to be involved in a terminal catabolic pathway. Mammalian PAOs oxidize Spm or Spd (and/or their acetyl derivatives) differently from monocotyledonous PAOs, producing Spd or putrescine, respectively, in addition to H(2)O(2) and an aminoaldehyde, and are therefore involved in a polyamine back-conversion pathway. In Arabidopsis thaliana, five PAOs (AtPAO1-AtPAO5) are present with cytosolic or peroxisomal localization and three of them (the peroxisomal AtPAO2, AtPAO3, and AtPAO4) form a distinct PAO subfamily. Here, a comparative study of the catalytic properties of recombinant AtPAO1, AtPAO2, AtPAO3, and AtPAO4 is presented, which shows that all four enzymes strongly resemble their mammalian counterparts, being able to oxidize the common polyamines Spd and/or Spm through a polyamine back-conversion pathway. The existence of this pathway in Arabidopsis plants is also evidenced in vivo. These enzymes are also able to oxidize the naturally occurring uncommon polyamines norspermine and thermospermine, the latter being involved in important plant developmental processes. Furthermore, data herein reveal some important differences in substrate specificity among the various AtPAOs, which suggest functional diversity inside the AtPAO gene family. These results represent a new starting point for further understanding of the physiological role(s) of the polyamine catabolic pathways in plants.  相似文献   

7.
Fragrance rice (Oryza sativa) contains two isoforms of BADH, named OsBADH1 and OsBADH2. OsBADH1 is implicated in acetaldehyde oxidation in rice plant peroxisomes, while the non-functional OsBADH2 is believed to be involved in the accumulation of 2-acetyl-1-pyrroline, the major compound of aroma in fragrance rice. In the present study, site-directed mutagenesis, molecular docking and molecular dynamics simulation studies were used to investigate the substrate specificity towards Bet-ald and GAB-ald. Consistent with our previous study, kinetics data indicated that the enzymes catalyze the oxidation of GAB-ald more efficiently than Bet-ald and the OsBADH1 W172F and OsBADH2 W170F mutants displayed a higher catalytic efficiency towards GAB-ald. Molecular docking analysis and molecular dynamics simulations for the first time provided models for aldehyde substrate-bound complexes of OsBADHs. The amino acid residues, E262, L263, C296 and W461 of OsBADH1 and E260, L261, C294 and W459 of OsBADH2 located within 5 Å of the OsBADH active site mainly interacted with GAB-ald forming strong hydrogen bonds in both OsBADH isoforms. Residues W163, N164, Q294, C296 and F397 of OsBADH1–Bet-ald and Y163, M167, W170, E260, S295 and C453 of OsBADH2–Bet-ald formed the main interaction sites while E260 showed an interaction energy of −14.21 kcal/mol. Unconserved A290 in OsBADH1 and W288 in OsBADH2 appeared to be important for substrate recognition similar to that observed in PsAMADHs. Overall, the results here help to explain how two homologous rice BADHs recognize the aldehyde substrate differently, a key property to their biological role.  相似文献   

8.
Exo-1,5-α-l-arabinofuranosidases belonging to glycoside hydrolase family 43 have strict substrate specificity. These enzymes hydrolyze only the α-1,5-linkages of linear arabinan and arabino-oligosaccharides in an exo-acting manner. The enzyme from Streptomyces avermitilis contains a core catalytic domain belonging to glycoside hydrolase family 43 and a C-terminal arabinan binding module belonging to carbohydrate binding module family 42. We determined the crystal structure of intact exo-1,5-α-l-arabinofuranosidase. The catalytic module is composed of a 5-bladed β-propeller topologically identical to the other family 43 enzymes. The arabinan binding module had three similar subdomains assembled against one another around a pseudo-3-fold axis, forming a β-trefoil-fold. A sugar complex structure with α-1,5-l-arabinofuranotriose revealed three subsites in the catalytic domain, and a sugar complex structure with α-l-arabinofuranosyl azide revealed three arabinose-binding sites in the carbohydrate binding module. A mutagenesis study revealed that substrate specificity was regulated by residues Asn-159, Tyr-192, and Leu-289 located at the aglycon side of the substrate-binding pocket. The exo-acting manner of the enzyme was attributed to the strict pocket structure of subsite −1, formed by the flexible loop region Tyr-281–Arg-294 and the side chain of Tyr-40, which occupied the positions corresponding to the catalytic glycon cleft of GH43 endo-acting enzymes.  相似文献   

9.
Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-β. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg62, from an adjacent subunit. Notably, Arg62 must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens.  相似文献   

10.
3-Ketosteroid Δ4-(5α)-dehydrogenases (Δ4-(5α)-KSTDs) are enzymes that introduce a double bond between the C4 and C5 atoms of 3-keto-(5α)-steroids. Here we show that the ro05698 gene from Rhodococcus jostii RHA1 codes for a flavoprotein with Δ4-(5α)-KSTD activity. The 1.6 Å resolution crystal structure of the enzyme revealed three conserved residues (Tyr-319, Tyr-466, and Ser-468) in a pocket near the isoalloxazine ring system of the FAD co-factor. Site-directed mutagenesis of these residues confirmed that they are absolutely essential for catalytic activity. A crystal structure with bound product 4-androstene-3,17-dione showed that Ser-468 is in a position in which it can serve as the base abstracting the 4β-proton from the C4 atom of the substrate. Ser-468 is assisted by Tyr-319, which possibly is involved in shuttling the proton to the solvent. Tyr-466 is at hydrogen bonding distance to the C3 oxygen atom of the substrate and can stabilize the keto-enol intermediate occurring during the reaction. Finally, the FAD N5 atom is in a position to be able to abstract the 5α-hydrogen of the substrate as a hydride ion. These features fully explain the reaction catalyzed by Δ4-(5α)-KSTDs.  相似文献   

11.
Threonine synthase (TS), which is a pyridoxal 5′-phosphate (PLP)-dependent enzyme, catalyzes the elimination of the γ-phosphate group from O-phospho-l-homoserine (OPHS) and the subsequent addition of water at Cβ to form l-threonine. The catalytic course of TS is the most complex among the PLP enzymes, and it is an intriguing problem how the elementary steps are controlled in TS to carry out selective reactions. When l-vinylglycine was added to Thermus thermophilus HB8 TS in the presence of phosphate, l-threonine was formed with kcat and reaction specificity comparable with those when OPHS was used as the substrate. However, in the absence of phosphate or when sulfate was used in place of phosphate, only the side reaction product, α-ketobutyrate, was formed. Global analysis of the spectral changes in the reaction of TS with l-threonine showed that compared with the more acidic sulfate ion, the phosphate ion decreased the energy levels of the transition states of the addition of water at the Cβ of the PLP-α-aminocrotonate aldimine (AC) and the transaldimination to form l-threonine. The x-ray crystallographic analysis of TS complexed with an analog for AC gave a distinct electron density assigned to the phosphate ion derived from the solvent near the Cβ of the analog. These results indicated that the phosphate ion released from OPHS by γ-elimination acts as the base catalyst for the addition of water at Cβ of AC, thereby providing the basis of the reaction specificity. The phosphate ion is also considered to accelerate the protonation/deprotonation at Cγ.  相似文献   

12.
Polyamine oxidase (PAO) is a flavin adenine dinucleotide-dependent enzyme involved in polyamine catabolism. Animal PAOs oxidize spermine (Spm), spermidine (Spd), and/or their acetyl derivatives to produce H2O2, an aminoaldehyde, and Spd or putrescine, respectively, thus being involved in a polyamine back-conversion pathway. On the contrary, plant PAOs that have been characterized to date oxidize Spm and Spd to produce 1,3-diaminopropane, H2O2, and an aminoaldehyde and are therefore involved in the terminal catabolism of polyamines. A database search within the Arabidopsis (Arabidopsis thaliana) genome sequence showed the presence of a gene (AtPAO1) encoding for a putative PAO with 45% amino acid sequence identity with maize (Zea mays) PAO. The AtPAO1 cDNA was isolated and cloned in a vector for heterologous expression in Escherichia coli. The recombinant protein was purified by affinity chromatography on guazatine-Sepharose 4B and was shown to be a flavoprotein able to oxidize Spm, norspermine, and N1-acetylspermine with a pH optimum at 8.0. Analysis of the reaction products showed that AtPAO1 produces Spd from Spm and norspermidine from norspermine, demonstrating a substrate oxidation mode similar to that of animal PAOs. To our knowledge, AtPAO1 is the first plant PAO reported to be involved in a polyamine back-conversion pathway.  相似文献   

13.
γ-Glutamylamine cyclotransferase (GGACT) is an enzyme that converts γ-glutamylamines to free amines and 5-oxoproline. GGACT shows high activity toward γ-glutamyl-ϵ-lysine, derived from the breakdown of fibrin and other proteins cross-linked by transglutaminases. The enzyme adopts the newly identified cyclotransferase fold, observed in γ-glutamylcyclotransferase (GGCT), an enzyme with activity toward γ-glutamyl-α-amino acids (Oakley, A. J., Yamada, T., Liu, D., Coggan, M., Clark, A. G., and Board, P. G. (2008) J. Biol. Chem. 283, 22031–22042). Despite the absence of significant sequence identity, several residues are conserved in the active sites of GGCT and GGACT, including a putative catalytic acid/base residue (GGACT Glu82). The structure of GGACT in complex with the reaction product 5-oxoproline provides evidence for a common catalytic mechanism in both enzymes. The proposed mechanism, combined with the three-dimensional structures, also explains the different substrate specificities of these enzymes. Despite significant sequence divergence, there are at least three subfamilies in prokaryotes and eukaryotes that have conserved the GGCT fold and GGCT enzymatic activity.  相似文献   

14.
The β-hydroxyacid dehydrogenases form a large family of ubiquitous enzymes that catalyze oxidation of various β-hydroxy acid substrates to corresponding semialdehydes. Several known enzymes include β-hydroxyisobutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, 2-(hydroxymethyl)glutarate dehydrogenase, and phenylserine dehydrogenase, but the vast majority of β-hydroxyacid dehydrogenases remain uncharacterized. Here, we demonstrate that the predicted β-hydroxyisobutyrate dehydrogenase PA0743 from Pseudomonas aeruginosa catalyzes an NAD+-dependent oxidation of l-serine and methyl-l-serine but exhibits low activity against β-hydroxyisobutyrate. Two crystal structures of PA0743 were solved at 2.2–2.3-Å resolution and revealed an N-terminal Rossmann fold domain connected by a long α-helix to the C-terminal all-α domain. The PA0743 apostructure showed the presence of additional density modeled as HEPES bound in the interdomain cleft close to the predicted catalytic Lys-171, revealing the molecular details of the PA0743 substrate-binding site. The structure of the PA0743-NAD+ complex demonstrated that the opposite side of the enzyme active site accommodates the cofactor, which is also bound near Lys-171. Site-directed mutagenesis of PA0743 emphasized the critical role of four amino acid residues in catalysis including the primary catalytic residue Lys-171. Our results provide further insight into the molecular mechanisms of substrate selectivity and activity of β-hydroxyacid dehydrogenases.  相似文献   

15.
Aminoaldehyde dehydrogenase (AMADH, EC 1.2.1.19) is an enzyme that, in association with amine oxidase, participates in polyamine catabolism. In plants, the enzyme is well characterized in pea seedlings. In this study, we used etiolated and light-grown pea seedlings as model plants to evaluate the possible AMADH role in response to stress caused by mechanical damage. In the beginning, the activity distribution of AMADH, amine oxidase and peroxidase in organs of 7-day-old intact pea seedlings was analyzed. To perform mechanical damage, stems of 10-day-old seedlings were each divided into four segments of equal length. The top (=fourth) segments were then longitudinally cut with a lancet. During healing, the injured segments and their control counterparts were harvested in 1-day intervals and analyzed for activity of the above enzymes, polyamine and 4-aminobutyrate (GABA) concentrations. The injury elicited increases in AMADH, amine oxidase and peroxidase activities in both etiolated and green seedlings, accompanied by parallel increases in putrescine, cadaverine, spermidine and GABA content. Histochemical experiments allowed visualization of increased AMADH activity in cross sections obtained from the injured stem segments. The activity was localized in cortical parenchyma and epidermal cells adjacent to the wound site in spatial correlation with an intensive lignification. In the control seedlings, AMADH activity or lignification in these tissues could not be visualized. Thus, we conclude that, in plants, AMADH may participate in processes of adaptation to stress events caused by mechanical injury, which involve polyamine catabolism, GABA production and lignification.  相似文献   

16.
α-Galactosidases catalyze the hydrolysis of terminal α-1,6-galactosyl units from galacto-oligosaccharides and polymeric galactomannans. The crystal structures of tetrameric Saccharomyces cerevisiae α-galactosidase and its complexes with the substrates melibiose and raffinose have been determined to 1.95, 2.40, and 2.70 Å resolution. The monomer folds into a catalytic (α/β)8 barrel and a C-terminal β-sandwich domain with unassigned function. This pattern is conserved with other family 27 glycosidases, but this enzyme presents a unique 45-residue insertion in the β-sandwich domain that folds over the barrel protecting it from the solvent and likely explaining its high stability. The structure of the complexes and the mutational analysis show that oligomerization is a key factor in substrate binding, as the substrates are located in a deep cavity making direct interactions with the adjacent subunit. Furthermore, docking analysis suggests that the supplementary domain could be involved in binding sugar units distal from the scissile bond, therefore ascribing a role in fine-tuning substrate specificity to this domain. It may also have a role in promoting association with the polymeric substrate because of the ordered arrangement that the four domains present in one face of the tetramer. Our analysis extends to other family 27 glycosidases, where some traits regarding specificity and oligomerization can be formulated on the basis of their sequence and the structures available. These results improve our knowledge on the activity of this important family of enzymes and give a deeper insight into the structural features that rule modularity and protein-carbohydrate interactions.  相似文献   

17.
The typical reaction catalyzed by type III polyketide synthases (PKSs) is a decarboxylative condensation between acyl-CoA (starter substrate) and malonyl-CoA (extender substrate). In contrast, curcumin synthase 1 (CURS1), which catalyzes curcumin synthesis by condensing feruloyl-CoA with a diketide-CoA, uses a β-keto acid (which is derived from diketide-CoA) as an extender substrate. Here, we determined the crystal structure of CURS1 at 2.32 Å resolution. The overall structure of CURS1 was very similar to the reported structures of type III PKSs and exhibited the αβαβα fold. However, CURS1 had a unique hydrophobic cavity in the CoA-binding tunnel. Replacement of Gly-211 with Phe greatly reduced the enzyme activity. The crystal structure of the G211F mutant (at 2.5 Å resolution) revealed that the side chain of Phe-211 occupied the hydrophobic cavity. Biochemical studies demonstrated that CURS1 catalyzes the decarboxylative condensation of a β-keto acid using a mechanism identical to that for normal decarboxylative condensation of malonyl-CoA by typical type III PKSs. Furthermore, the extender substrate specificity of CURS1 suggested that hydrophobic interaction between CURS1 and a β-keto acid may be important for CURS1 to use an extender substrate lacking the CoA moiety. From these results and a modeling study on substrate binding, we concluded that the hydrophobic cavity is responsible for the hydrophobic interaction between CURS1 and a β-keto acid, and this hydrophobic interaction enables the β-keto acid moiety to access the catalytic center of CURS1 efficiently.  相似文献   

18.
Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases.  相似文献   

19.
The β-N-acetylhexosaminidase (EC 3.2.1.52) from glycoside hydrolase family 20 (GH20) catalyzes the hydrolysis of the β-N-acetylglucosamine (NAG) group from the nonreducing end of various glycoconjugates. The putative surface-exposed N-acetylhexosaminidase StrH/Spr0057 from Streptococcus pneumoniae R6 was proved to contribute to the virulence by removal of β(1,2)-linked NAG on host defense molecules following the cleavage of sialic acid and galactose by neuraminidase and β-galactosidase, respectively. StrH is the only reported GH20 enzyme that contains a tandem repeat of two 53% sequence-identical catalytic domains (designated as GH20-1 and GH20-2, respectively). Here, we present the 2.1 Å crystal structure of the N-terminal domain of StrH (residues Glu-175 to Lys-642) complexed with NAG. It adopts an overall structure similar to other GH20 enzymes: a (β/α)8 TIM barrel with the active site residing at the center of the β-barrel convex side. The kinetic investigation using 4-nitrophenyl N-acetyl-β-d-glucosaminide as the substrate demonstrated that GH20-1 had an enzymatic activity (kcat/Km) of one-fourth compared with GH20-2. The lower activity of GH20-1 could be attributed to the substitution of active site Cys-469 of GH20-1 to the counterpart Tyr-903 of GH20-2. A complex model of NAGβ(1,2)Man at the active site of GH20-1 combined with activity assays of the corresponding site-directed mutants characterized two key residues Trp-443 and Tyr-482 at subsite +1 of GH20-1 (Trp-876 and Tyr-914 of GH20-2) that might determine the β(1,2) substrate specificity. Taken together, these findings shed light on the mechanism of catalytic specificity toward the β(1,2)-linked β-N-acetylglucosides.  相似文献   

20.
The 6-phospho-β-glucosidase BglA-2 (EC 3.2.1.86) from glycoside hydrolase family 1 (GH-1) catalyzes the hydrolysis of β-1,4-linked cellobiose 6-phosphate (cellobiose-6′P) to yield glucose and glucose 6-phosphate. Both reaction products are further metabolized by the energy-generating glycolytic pathway. Here, we present the first crystal structures of the apo and complex forms of BglA-2 with thiocellobiose-6′P (a non-metabolizable analog of cellobiose-6′P) at 2.0 and 2.4 Å resolution, respectively. Similar to other GH-1 enzymes, the overall structure of BglA-2 from Streptococcus pneumoniae adopts a typical (β/α)8 TIM-barrel, with the active site located at the center of the convex surface of the β-barrel. Structural analyses, in combination with enzymatic data obtained from site-directed mutant proteins, suggest that three aromatic residues, Tyr126, Tyr303, and Trp338, at subsite +1 of BglA-2 determine substrate specificity with respect to 1,4-linked 6-phospho-β-glucosides. Moreover, three additional residues, Ser424, Lys430, and Tyr432 of BglA-2, were found to play important roles in the hydrolytic selectivity toward phosphorylated rather than non-phosphorylated compounds. Comparative structural analysis suggests that a tryptophan versus a methionine/alanine residue at subsite −1 may contribute to the catalytic and substrate selectivity with respect to structurally similar 6-phospho-β-galactosidases and 6-phospho-β-glucosidases assigned to the GH-1 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号