首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genomics》2019,111(6):1209-1215
The monal genus (Lophophorus) is a branch of Phasianidae and its species inhabit the high-altitude mountains of the Qinghai-Tibet Plateau. The Chinese monal, L. lhuysii, is a threatened endemic bird of China that possesses high-altitude adaptability, diversity of plumage color and potentially low reproductive life history. This is the first study to describe the monal genome using next generation sequencing technology. The Chinese monal genome size is 1.01 Gb, with 16,940 protein-coding genes. Gene annotation yielded 100.93 Mb (9.97%) repeat elements, 785 ncRNA, 5,465,549 bp (0.54%) SSR and 15,550 (92%) genes in public databases. Compared to other birds and mammals, the genome evolution analysis showed numerous expanded gene families and positive selected genes involved in high-altitude adaptation, especially related to the adaptation of low temperature and hypoxia. Consequently, this gene data can be used to investigate the molecular evolution of high-altitude adaptation in future bird research. Our first published genome of the genus Lophophorus will be integral for the study of monal population genetic diversity and conservation, genomic evolution and Galliformes species differentiation in the Qinghai-Tibetan Plateau.  相似文献   

2.
3.

Background

In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics.

Results

Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion.

Conclusion

The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1190-9) contains supplementary material, which is available to authorized users.  相似文献   

4.
《Genomics》2020,112(5):3003-3012
Ochrobactrum genus is comprised of soil-dwelling Gram-negative bacteria mainly reported for bioremediation of toxic compounds. Since last few years, mainly two species of this genus, O. intermedium and O. anthropi were documented for causing infections mostly in the immunocompromised patients. Despite such ubiquitous presence, study of adaptation in various niches is still lacking. Thus, to gain insights into the niche adaptation strategies, pan-genome analysis was carried out by comparing 67 genome sequences belonging to Ochrobactrum species. Pan-genome analysis revealed it is an open pan-genome indicative of the continuously evolving nature of the genus. The presence/absence of gene clusters also illustrated the unique presence of antibiotic efflux transporter genes and type IV secretion system genes in the clinical strains while the genes of solvent resistance and exporter pumps in the environmental strains. A phylogenomic investigation based on 75 core genes depicted better and robust phylogenetic resolution and topology than the 16S rRNA gene. To support the pan-genome analysis, individual genomes were also investigated for the mobile genetic elements (MGE), antibiotic resistance genes (ARG), metal resistance genes (MRG) and virulence factors (VF). The analysis revealed the presence of MGE, ARG, and MRG in all the strains which play an important role in the species evolution which is in agreement with the pan-genome analysis. The average nucleotide identity (ANI) based on the genetic relatedness between the Ochrobactrum species indicated a distinction between individual species. Interestingly, the ANI tool was able to classify the Ochrobactrum genomes to the species level which were assigned till the genus level on the NCBI database.  相似文献   

5.
Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation.  相似文献   

6.
Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.  相似文献   

7.
【目的】枯草芽孢杆菌(Bacillus subtilis)是在自然界中广泛存在的革兰氏阳性菌,其抗逆性极强,能抑制大多数有害菌的繁殖,是常用的产酶菌,用其生产的蛋白酶、淀粉酶占全球工业酶产量的50%。原噬菌体(prophage)整合在宿主基因组中,可为宿主提供基因和生物学功能,非常具有研究价值。以往,有关B. subtilis原噬菌体的报道主要集中于缺陷型原噬菌体(defective prophage),本研究对一株非缺陷型活性原噬菌体(active prophage)的基因组进行解析,以扩充对非缺陷型原噬菌体的认知。【方法】使用丝裂霉素C从枯草芽孢杆菌中诱导一株噬菌体,命名为Bacillus phage Bsu-yong1(简称Bsu-yong1)。对Bsu-yong1进行负染、透射电镜(transmission electron microscopy,TEM)观察,用Illumina MiSeq测定其基因组序列、综合运用生物信息学工具对其进行基因功能注释和系统进化分析。【结果】Bsu-yong1与PBSX类缺陷型原噬菌体在形态上相似,但Bsu-yong1具有完整的噬菌体基因组,这与缺陷型原噬菌体不同,后者在包装过程中不能正确包裹自身的基因组,而是随机包裹一段宿主染色体。Bsu-yong1基因组全长为43 590 bp,G+C含量为41%,含有62个开放阅读框(open reading frame,ORF),呈模块化分布。Bsu-yong1拥有基因编码T7SS效应器LXG多态性毒素(T7SS effector LXG polymorphic toxin)、ImmA/IrrE蛋白和SMI1/KNR4蛋白。前二者为细菌毒素(toxin),后者为抗毒素(antitoxin),toxin-antitoxin是细菌免疫系统重要成员,参与菌间竞争与环境适应。此前,尚未有编码LXG polymorphic toxin的基因在噬菌体中被发现和报道。在基于全基因组比对构建的蛋白谱进化树(proteomic tree)中,Bsu-yong1与噬菌体sv105、rho14、vB_BteM-A9Y聚集形成一个独立的进化支(clade),基因组比对显示它们基因组的复制与调控模块具有高度保守性,它们共享29个核心基因(core gene),均具有PBSX样形态特征。Bsu-yong1与其他噬菌体的进化距离较远。将Bsu-yong1与所有噬菌体进行比对,得到的成对序列比较(pairwise sequence comparison,PASC)最大值为46.72%,小于属边界值(70%)。【结论】vB_Bsu-yong1在有尾纲中代表一个新的未知的属;建议构建一个新的科(family),该科由Bsu-yong1与噬菌体sv105、rho14、vB_BteM-A9Y组成。vB_Bsu-yong携带免疫相关基因,它可能有利于宿主在菌间竞争中获胜和适应环境。本研究丰富了噬菌体基因数据库,拓展了对芽孢杆菌活性原噬菌体的认知。  相似文献   

8.
Species of the genus Streptomyces are of major pharmaceutical interest because they synthesize a variety of bioactive secondary metabolites. We have determined the complete nucleotide sequence of the linear chromosome of Streptomyces avermitilis. S. avermitilis produces avermectins, a group of antiparasitic agents used in human and veterinary medicine. The genome contains 9,025,608 bases (average GC content, 70.7%) and encodes at least 7,574 potential open reading frames (ORFs). Thirty-five percent of the ORFs (2,664) constitute 721 paralogous families. Thirty gene clusters related to secondary metabolite biosynthesis were identified, corresponding to 6.6% of the genome. Comparison with Streptomyces coelicolor A3(2) revealed that an internal 6.5-Mb region in the S. avermitilis genome was highly conserved with respect to gene order and content, and contained all known essential genes but showed perfectly asymmetric structure at the oriC center. In contrast, the terminal regions were not conserved and preferentially contained nonessential genes.  相似文献   

9.
Kasahara M 《Immunogenetics》1999,50(3-4):134-145
 It has recently become apparent that the human genome contains at least three regions that are paralogous to the major histocompatibility complex (MHC). The number of gene families with copies in the MHC and these paralogous regions is increasing steadily as genome analysis progresses. This review presents the updated listing of the human gene families that constitute the MHC paralogous group. When genes with multiple copies within the MHC, such as class I and class II genes, are counted as single entities, nearly one-third of the genes residing in the HLA complex have paralogous copies in at least one of the three paralogous regions. The review also discusses the long-term genome dynamics of the MHC, taking into account the rapidly accumulating information on the genomic organizations of the MHCs in various model organisms.  相似文献   

10.
11.
A highly lethal hemorrhagic disease associated with infection by elephant endotheliotropic herpesvirus (EEHV) poses a severe threat to Asian elephant husbandry. We have used high-throughput methods to sequence the genomes of the two genotypes that are involved in most fatalities, namely, EEHV1A and EEHV1B (species Elephantid herpesvirus 1, genus Proboscivirus, subfamily Betaherpesvirinae, family Herpesviridae). The sequences were determined from postmortem tissue samples, despite the data containing tiny proportions of viral reads among reads from a host for which the genome sequence was not available. The EEHV1A genome is 180,421 bp in size and consists of a unique sequence (174,601 bp) flanked by a terminal direct repeat (2,910 bp). The genome contains 116 predicted protein-coding genes, of which six are fragmented, and seven paralogous gene families are present. The EEHV1B genome is very similar to that of EEHV1A in structure, size, and gene layout. Half of the EEHV1A genes lack orthologs in other members of subfamily Betaherpesvirinae, such as human cytomegalovirus (genus Cytomegalovirus) and human herpesvirus 6A (genus Roseolovirus). Notable among these are 23 genes encoding type 3 membrane proteins containing seven transmembrane domains (the 7TM family) and seven genes encoding related type 2 membrane proteins (the EE50 family). The EE50 family appears to be under intense evolutionary selection, as it is highly diverged between the two genotypes, exhibits evidence of sequence duplications or deletions, and contains several fragmented genes. The availability of the genome sequences will facilitate future research on the epidemiology, pathogenesis, diagnosis, and treatment of EEHV-associated disease.  相似文献   

12.

Background

Helicobacter pylori has a reduced genome and lives in a tough environment for long-term persistence. It evolved with its particular characteristics for biological adaptation. Because several H. pylori genome sequences are available, comparative analysis could help to better understand genomic adaptation of this particular bacterium.

Principal Findings

We analyzed nine H. pylori genomes with emphasis on microevolution from a different perspective. Inversion was an important factor to shape the genome structure. Illegitimate recombination not only led to genomic inversion but also inverted fragment duplication, both of which contributed to the creation of new genes and gene family, and further, homological recombination contributed to events of inversion. Based on the information of genomic rearrangement, the first genome scaffold structure of H. pylori last common ancestor was produced. The core genome consists of 1186 genes, of which 22 genes could particularly adapt to human stomach niche. H. pylori contains high proportion of pseudogenes whose genesis was principally caused by homopolynucleotide (HPN) mutations. Such mutations are reversible and facilitate the control of gene expression through the change of DNA structure. The reversible mutations and a quasi-panmictic feature could allow such genes or gene fragments frequently transferred within or between populations. Hence, pseudogenes could be a reservoir of adaptation materials and the HPN mutations could be favorable to H. pylori adaptation, leading to HPN accumulation on the genomes, which corresponds to a special feature of Helicobacter species: extremely high HPN composition of genome.

Conclusion

Our research demonstrated that both genome content and structure of H. pylori have been highly adapted to its particular life style.  相似文献   

13.
The genus Oryzias contains nearly 20 species, including the Japanese medaka (Oryzias latipes). Because each species exhibits different adaptability to environmental salinity, Oryzias fishes offer unique opportunities for comparative studies. To understand the mechanisms of osmotic adaptation, we are studying the functional evolution of the natriuretic peptide (NP) family??a group of small peptide hormones involved in body fluid regulation??by using Oryzias fishes. Analysis of the Japanese medaka genome revealed that 7 NP subtypes, namely, Atrial NP (ANP), B-type NP (BNP), Ventricular NP (VNP), and 4?C-type NPs (CNP-1 through CNP-4) were generated from a CNP-4-like ancestral gene discovered in the cyclostomes before the ray-finned fish/lobe-finned fish divergence. This evolutionary history has been confirmed by the discovery of hidden NP genes in tetrapods. Through analyses of phylogenetic distribution of NP subtypes, we also found that specific losses of subtypes have occurred in each vertebrate lineage. For example, ANP is absent in the Japanese and Indian medaka and the flying fish, suggesting that loss of the ANP gene occurred after the divergence of Beloniformes from Cyprinodontiformes. This fact also supports the inclusion of Oryzias into Beloniformes as suggested by phylogenetic analysis using whole mitochondrial genome sequences. How Oryzias fishes have retained their euryhalinity with a reduced number of NPs is an interesting question. CNP-3, which is functionally flexible, may be a substitute for the lost cardiac NPs.  相似文献   

14.

Background

Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella.

Results

The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades.

Conclusions

Prevotella intermedia ZT belongs to a genus marked with highly dynamic genomes. The specific genes of Prevotella intermedia indicate that adhesion, competing with surrounding microbes and horizontal gene transfer are the main drive of the evolution of Prevotella intermedia.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1272-3) contains supplementary material, which is available to authorized users.  相似文献   

15.
Members of the Achromobacter genus are Gram-negative bacteria including both environmental and clinical isolates, which are increasingly recovered from patients with cystic fibrosis (CF) as emerging pathogens. To better understand the features of the genus and its potential pathogenic mechanisms, six available Achromobacter genomes were compared in this study. The results revealed that: (1) Achromobacter had a pan-genome size of 10,750 genes with 3,398 core genes and a similar global classification of protein functions; (2) the Achromobacter genomes underwent a relatively low recombination that introduced nearly twice nucleotide substitutions less than the point mutation in genome evolution; (3) phylogenomic analysis based on 436 conserved proteins and average nucleotide identity both indicated that the Achromobacter genus had the closest relationship to the human/animal pathogen Bordetella rather than to Alcaligenes. The entire group of Achromobacter clustered with Bordetella in phylogeny, strongly suggesting a common origin, which therefore highlighted the potentially pathogenic nature of Achromobacter from the phylogenetic perspective, and (4) the CF clinical isolate possessed markedly unique genomic features discriminated from the environmental isolate and was equipped with numerous factors that facilitate its adaptation to a pathogenic lifestyle, such as a type III secretion system, a “polysaccharide island” (36.0 kb) of capsular/cellulose synthesis, adhesion-related proteins, alcaligin biogenesis, and several putative toxins. This study provided the first comprehensive genomic comparative analysis for Achromobacter, revealed information to better understand this far less-known genus on the genomic scale, and, importantly, identified potential virulence factors of the Achromobacter pathogen.  相似文献   

16.
The need for sustainable agricultural practices is revitalizing the interest in biological nitrogen fixation and rhizobia-legumes symbioses, particularly those involving economically important legume crops in terms of food and forage. The genus Mesorhizobium includes species with high geographical dispersion and able to nodulate a wide variety of legumes, including important crop species, like chickpea or biserrula. Some cases of legume-mesorhizobia inoculant introduction represent exceptional opportunities to study the rhizobia genomes evolution and the evolutionary relationships among species. Complete genome sequences revealed that mesorhizobia typically harbour chromosomal symbiosis islands. The phylogenies of symbiosis genes, such as nodC, are not congruent with the phylogenies based on core genes, reflecting rhizobial host range, rather than species affiliation. This agrees with studies showing that Mesorhizobium species are able to exchange symbiosis genes through lateral transfer of chromosomal symbiosis islands, thus acquiring the ability to nodulate new hosts. Phylogenetic analyses of the Mesorhizobium genus based on core and accessory genes reveal complex evolutionary relationships and a high genomic plasticity, rendering the Mesorhizobium genus as a good model to investigate rhizobia genome evolution and adaptation to different host plants. Further investigation of symbiosis genes as well as stress response genes will certainly contribute to understand mesorhizobia-legume symbiosis and to develop more effective mesorhizobia inoculants.  相似文献   

17.
At the genome level, microorganisms are highly adaptable both in terms of allele and gene composition. Such heritable traits emerge in response to different environmental niches and can have a profound influence on microbial community dynamics. As a consequence, any individual genome or population will contain merely a fraction of the total genetic diversity of any operationally defined “species”, whose ecological potential can thus be only fully understood by studying all of their genomes and the genes therein. This concept, known as the pangenome, is valuable for studying microbial ecology and evolution, as it partitions genomes into core (present in all the genomes from a species, and responsible for housekeeping and species-level niche adaptation among others) and accessory regions (present only in some, and responsible for intra-species differentiation). Here we present SuperPang, an algorithm producing pangenome assemblies from a set of input genomes of varying quality, including metagenome-assembled genomes (MAGs). SuperPang runs in linear time and its results are complete, non-redundant, preserve gene ordering and contain both coding and non-coding regions. Our approach provides a modular view of the pangenome, identifying operons and genomic islands, and allowing to track their prevalence in different populations. We illustrate this by analysing intra-species diversity in Polynucleobacter, a bacterial genus ubiquitous in freshwater ecosystems, characterized by their streamlined genomes and their ecological versatility. We show how SuperPang facilitates the simultaneous analysis of allelic and gene content variation under different environmental pressures, allowing us to study the drivers of microbial diversification at unprecedented resolution.  相似文献   

18.
19.
Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its “pan-genome”. We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800–3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon) are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25–53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis, in order to link the distribution pattern of a specific phenotype to the presence/absence of specific sets of genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号