首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.

Background

Preeclampsia is a common obstetrical disease affecting 3-5% of pregnancies and representing one of the leading causes of both maternal and fetal mortality. Maternal symptoms occur as an excessive systemic inflammatory reaction in response to the placental factors released by the oxidatively stressed and functional impaired placenta. The T-cell immunoglobulin domain and mucin domain (TIM) family is a relatively newly described group of molecules with a conserved structure and important immunological functions. Identification of Galectin-9 as a ligand for TIM-3 has established the Galectin-9/TIM-3 pathway as an important regulator of Th1 immunity and tolerance induction.

Methods

The aim of our study was to investigate the expression and function of Galectin-9 and TIM-3 molecules by peripheral blood mononuclear cells and the possible role of Galectin-9/TIM-3 pathway in the immunoregulation of healthy pregnancy and early-onset preeclampsia. We determined TIM-3 and Gal-9 expression and cytotoxicicty of peripheral lymphocytes of early-onset preeclamptic women and healthy pregnant woman using flow cytometry.

Results

Investigating peripheral lymphocytes of women with early-onset preeclampsia, our results showed a decreased TIM-3 expression by T cells, cytotoxic T cells, NK cells and CD56dim NK cells compared to healthy pregnant women. Interestingly, we found a notably increased frequency of Galectin-9 positive cells in each investigated lymphocyte population in the case of early-onset preeclamptic patients. We further demonstrated increased cytotoxic activity by cytotoxic T and CD56dim NK cells in women with early-onset preeclampsia. Our findings showed that the strongest cellular cytotoxic response of lymphocytes occurred in the TIM-3 positive subpopulations of different lymphocytes subsets in early-onset preeclampsia.

Conclusion

These data suggest that Gal-9/TIM-3 pathway could play an important role in the immune regulation during pregnancy and the altered Galectin-9 and TIM-3 expression could result an enhanced systemic inflammatory response including the activation of Th1 lymphocytes in preeclampsia.  相似文献   

5.

Aim

Myocardial infarction (MI) remains a major cause of death and disability worldwide, despite available reperfusion therapies. Inflammatory signaling is considered nodal in defining final infarct size. Activation of the innate immune receptor toll-like receptors (TLR) 9 prior to ischemia and reperfusion (I/R) reduces infarct size, but the consequence of TLR9 activation timed to the onset of ischemia is not known.

Methods and Results

The TLR9-agonist; CpG B was injected i.p. in C57BL/6 mice immediately after induction of ischemia (30 minutes). Final infarct size, as well as area-at-risk, was measured after 24 hours of reperfusion. CpG B injection resulted in a significant increase in circulating granulocytes and monocytes both in sham and I/R mice. Paradoxically, clear evidence of reduced cardiac infiltration of both monocytes and granulocytes could be demonstrated in I/R mice treated with CpG B (immunocytochemistry, myeloperoxidase activity and mRNA expression patterns). In addition, systemic TLR9 activation elicited significant alterations of cardiac inflammatory genes. Despite these biochemical and cellular changes, there was no difference in infarct size between vehicle and CpG B treated I/R mice.

Conclusion

Systemic TLR9-stimulation upon onset of ischemia and subsequent reperfusion does not alter final infarct size despite causing clear alterations of both systemic and cardiac inflammatory parameters. Our results question the clinical usefulness of TLR9 activation during cardiac I/R.  相似文献   

6.
Galectin-3 as a multifunctional protein   总被引:5,自引:0,他引:5  
Galectin-3 is a 31 kDa member of a growing family of beta-galactoside-binding animal lectins. This protein is expressed in a variety of tissues and cell types and is mainly found in the cytoplasm, although, depending on cell type and proliferative state, a significant amount of this lectin can also be detected in the nucleus, on the cell surface or in the extracellular environment. Galectin-3 is secreted from cells by a novel and incompletely understood mechanism that is independent of the classical secretory pathway through the endoplasmic reticulum/Golgi network. Galectin-3 exhibits pleiotropic biological function, playing a key role in many physiological and pathological processes.  相似文献   

7.
Gamma-glutamyl transpeptidase (GGTP) is highly enriched in blood-brain barrier (BBB) microvessels. According to the most cited hypothesis its functional role is amino acid transport across the BBB. To test this hypothesis the influence of GGTP inhibition on cystine uptake was measured in isolated brain microvessels. Adult porcine brain microvessels were enzymatically isolated, resulting in an enrichment of GGTP from 3 to 85 U/mg protein. The inhibitors 0.1 mM AT-125 combined with 20 mM hippurate reduced the GGPT enzyme activity by more than 98%. However this inhibition did not influence the uptake of [35S]-cystine, which is the substrate with the highest affinity in the GGTP-reaction. Instead increased glutathione (GSH) levels and elevated [35S] release were found. These results show that GGTP does not mediate the transport of cystine into brain microvessels in vitro and suggest that GGTP plays a role in cellular GSH metabolism.  相似文献   

8.
Tenhaken R  Rubel C 《Plant physiology》1997,115(1):291-298
The function of salicylic acid (SA) in hypersensitive cell death was studied in a soybean (Glycine max)-Pseudomonas syringae pv glycinea system. The infection of cell cultures with bacteria leads to a hypersensitive reaction (HR), which is dependent on an appropriate avirulence gene and on low concentrations of SA. The requirement for SA is essential for a process shortly before the onset of the HR-caused cell death 5 to 6 h after infection with bacteria. SA given 10 to 12 h after infection or preincubation cannot rescue the completion of the cell death program. SA does not inhibit catalase or ascorbate peroxidase in soybean. In addition, the in vivo capacity of the cell culture for the rapid metabolism of H2O2 is not altered by SA. This clearly shows that SA is needed for the HR-caused cell death for a reaction downstream of the oxidative burst. Lipid peroxides accumulate during the HR, but the loss of membrane control precedes the generation of lipid peroxides. The accumulation of lipid peroxides in the HR can be prevented by lipid antioxidants. Nevertheless, cell death kinetics remain unaltered in the presence of antioxidants. It is concluded that lipid peroxides are a consequence of cell death, but not the primary cause of it.  相似文献   

9.
10.
Kinins are potent pro-inflammatory peptides that act through two G protein-coupled receptor subtypes, B1 (B1R) and B2 (B2R). Kinin-stimulated B2R signaling is often transient, whereas B1R signaling is sustained. This was confirmed by monitoring agonist-stimulated intracellular Ca2+ mobilization in A10 smooth muscle cells expressing human wild-type B2R and B1R. We further studied the role of receptor membrane trafficking in receptor-mediated phosphoinositide (PI) hydrolysis in model HEK293 cell lines stably expressing the receptors. Treatment of cells with brefeldin A, to inhibit maturation of de novo synthesized receptors, or hypertonic sucrose, to inhibit receptor endocytosis, showed that the basal cell surface receptor turnover was considerably faster for B1R than for B2R. Inhibition of endocytosis, which stabilized B1R on the cell surface, inhibited B1R signaling, whereas B2R signaling was not perturbed. Signaling by a B1R construct in which the entire C-terminal domain was deleted remained sensitive to inhibition of receptor endocytosis, whereas signaling by a B1R construct in which this domain was substituted with the corresponding domain in B2R was not sensitive. B2R and B1R co-expression, which also appeared to stabilize B1R on the cell surface, presumably by receptor hetero-dimerization, also inhibited B1R signaling, whereas B2R signaling was slightly enhanced. Furthermore, the B2R-specific agonist bradykinin (BK) directed both receptors through a common endocytic pathway, whereas the B1R-specific agonist Lys-desArg9-BK was unable to do so. These results suggest that B1R-mediated PI hydrolysis depends on a step in receptor endocytosis, whereas B2R-mediated PI hydrolysis does not. We propose that B1R uses at least part of the endocytic machinery to sustain agonist-promoted signaling.  相似文献   

11.
TIM-3 as a new therapeutic target in systemic lupus erythematosus   总被引:1,自引:0,他引:1  
T-cell immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3) was the first surface molecule that specifically identifies Th1 cells in both mice and human. Recently, identification of Galectin-9 as a ligand for TIM-3 has established the TIM-3–Galectin-9 pathway as an important regulator of Th1 immunity and tolerance induction. Many previous studies have demonstrated that TIM-3 influences chronic autoimmune diseases, such as multiple sclerosis and rheumatoid arthritis. In addition, association of TIM-3 polymorphisms with susceptibility to several autoimmune diseases has been identified. Recent work has explored the role of TIM-3 in systemic lupus erythematosus (SLE), and their results indicate that TIM-3 may represent a novel target for the treatment of SLE. In this review, we will discuss the TIM-3 pathway and the therapeutic potential of modulating the pathway in SLE.  相似文献   

12.
It has been proposed that the mode of action of ethylenediurea, a very effective antiozonant, is via an increase in the antioxidant enzyme superoxide dismutase (EH Lee, JH Bennett [1982] Plant Physiol 69: 1444-1449). Data presented here refute that hypothesis. No ethylenediurea-associated increases in Cu/Zn-superoxide dismutase or Mn-superoxide dismutase activity, nor in steady-state Cu/Zn-superoxide dismutase protein levels, were found in soluble extracts of bean (Phaseolus vulgaris L. cv Bush Blue Lake 290) leaves. However, the cytosolic Cu/Zn-superoxide dismutase increased as a result of ozone fumigation and subsequent injury. Also noted was a developmentally related difference between chloroplastic and cytosolic Cu/Zn-superoxide dismutase, the latter declining during maturation of the leaf.  相似文献   

13.
Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. Recent studies have shown that many AML LSC-specific surface antigens could be such candidates. T cell immunoglobulin mucin-3 (TIM-3) is expressed on LSCs in most types of AML, except for acute promyelocytic leukemia, but not on normal hematopoietic stem cells (HSCs). In mouse models reconstituted with human AML LSCs or human hematopoietic stem cells, a human TIM-3 mouse IgG2a antibody with complement-dependent and antibody-dependent cellular cytotoxic activities eradicates AML LSCs in vivo but does not affect normal human hematopoiesis. Thus, TIM-3 is one of the promising targets to eradicate AML LSCs.  相似文献   

14.
15.
Prior work by members of our laboratory and others demonstrated that adenovirus serotype 30 (Ad30), a group D adenovirus, exhibited novel transduction characteristics compared to those of serotype 5 (Ad5, belonging to group C). While some serotype D adenoviruses bind to the coxsackie-adenovirus receptor (CAR), the ability of Ad30 fiber to bind CAR is unknown. We amplified and purified Ad30 and cloned the Ad30 fiber by overlap PCR. Alignment of Ad30 fiber with Ad3, Ad35, Ad5, Ad9, and Ad17 revealed that Ad30, like Ad9 and Ad17, has a shortened fiber sequence relative to that of Ad5. The knob region of fiber was 45% identical to that of the Ad5 knob regions. We made a chimeric recombinant virus (Ad5GFPf30) in which the Ad5 fiber (amino acids [aa]47 to 582) was replaced with Ad30 fiber sequences (aa 46 to 372), and CAR-mediated viral entry was determined on CAR-expressing Chinese hamster ovary (CHO) cells. While CAR expression significantly increased Ad5GFP-mediated transduction in CHO cells (from 1 to 36%), it did not enhance Ad5GFPf30 gene transfer. Binding of radiolabeled Ad5GFPf30 or Ad30 wild-type virus was also not improved by the expression of CAR. These results suggest that Ad30 fiber is distinct from Ad5, Ad9, and Ad17 fibers in its inability to direct transduction via CAR.  相似文献   

16.

Introduction

Interleukin (IL)-36α is a newly described member of the IL-1 cytokine family with a known inflammatory and pathogenic function in psoriasis. Recently, we could demonstrate that the receptor (IL-36R), its ligand IL-36α and its antagonist IL-36Ra are expressed in synovial tissue of arthritis patients. Furthermore, IL-36α induces MAP-kinase and NFκB signaling in human synovial fibroblasts with subsequent expression and secretion of pro-inflammatory cytokines.

Methods

To understand the pathomechanism of IL-36 dependent inflammation, we investigated the biological impact of IL-36α signaling in the hTNFtg mouse. Also the impact on osteoclastogenesis by IL-36α was tested in murine and human osteoclast assays.

Results

Diseased mice showed an increased expression of IL-36R and IL-36α in inflamed knee joints compared to wildtype controls. However, preventively treating mice with an IL-36R blocking antibody led to no changes in clinical onset and pattern of disease. Furthermore, blockade of IL-36 signaling did not change histological signs of TNF-induced arthritis. Additionally, no alteration on bone homeostasis was observed in ex vivo murine and human osteoclast differentiation assays.

Conclusion

Thus we conclude that IL-36α does not affect the development of inflammatory arthritis.  相似文献   

17.

Background and Objectives

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important regulators of insulin secretion, and their functional loss is an early characteristic of type 2 diabetes mellitus (T2DM). Pharmacological levels of GLP-1, but not GIP, can overcome this loss. GLP-1 and GIP exert their insulinotropic effects through their respective receptors expressed on pancreatic β-cells. Both the GLP-1 receptor (GLP-1R) and the GIP receptor (GIPR) are members of the secretin family of G protein-coupled receptors (GPCRs) and couple positively to adenylate cyclase. We compared the signalling properties of these two receptors to gain further insight into why GLP-1, but not GIP, remains insulinotropic in T2DM patients.

Methods

GLP-1R and GIPR were transiently expressed in HEK-293 cells, and basal and ligand-induced cAMP production were investigated using a cAMP-responsive luciferase reporter gene assay. Arrestin3 (Arr3) recruitment to the two receptors was investigated using enzyme fragment complementation, confocal microscopy and fluorescence resonance energy transfer (FRET).

Results

GIPR displayed significantly higher (P<0.05) ligand-independent activity than GLP-1R. Arr3 displayed a robust translocation to agonist-stimulated GLP-1R but not to GIPR. These observations were confirmed in FRET experiments, in which GLP-1 stimulated the recruitment of both GPCR kinase 2 (GRK2) and Arr3 to GLP-1R. These interactions were not reversed upon agonist washout. In contrast, GIP did not stimulate recruitment of either GRK2 or Arr3 to its receptor. Interestingly, arrestin remained at the plasma membrane even after prolonged (30 min) stimulation with GLP-1. Although the GLP-1R/arrestin interaction could not be reversed by agonist washout, GLP-1R and arrestin did not co-internalise, suggesting that GLP-1R is a class A receptor with regard to arrestin binding.

Conclusions

GIPR displays higher basal activity than GLP-1R but does not effectively recruit GRK2 or Arr3.  相似文献   

18.
The T-cell Ig and mucin domain-containing molecules (TIMs) have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. It has been reported that proinflammatory cytokine dysregulation and neutrophil-dominated inflammation are the main causes of morbidity in cystic fibrosis (CF). However, the role of TIM receptors in CF has not been investigated. In this study, we demonstrated that TIM-3 is constitutively overexpressed in the human CF airway, suggesting a link between CF transmembrane conductance regulator (CFTR) function and TIM-3 expression. Blockade of CFTR function with the CFTR inhibitor-172 induced an upregulation of TIM-3 and its ligand galectin-9 in normal bronchial epithelial cells. We also established that TIM-3 serves as a functional receptor in bronchial epithelial cells, and physiologically relevant concentrations of galectin-9 induced TIM-3 phosphorylation, resulting in increased IL-8 production. In addition, we have demonstrated that both TIM-3 and galectin-9 undergo rapid proteolytic degradation in the CF lung, primarily because of neutrophil elastase and proteinase-3 activity. Our results suggest a novel intrinsic defect that may contribute to the neutrophil-dominated immune response in the CF airways.  相似文献   

19.
Galectin-9 (Gal-9), a β-galactoside binding mammalian lectin, regulates immune responses by reducing pro-inflammatory IL-17-producing Th cells (Th17) and increasing anti-inflammatory Foxp3+ regulatory T cells (Treg) in vitro and in vivo. These functions of Gal-9 are thought to be exerted by binding to receptor molecules on the cell surface. However, Gal-9 lacks a signal peptide for secretion and is predominantly located in the cytoplasm, which raises questions regarding how and which cells secrete Gal-9 in vivo. Since Gal-9 expression does not necessarily correlate with its secretion, Gal-9-secreting cells in vivo have been elusive. We report here that CD4 T cells expressing Gal-9 on the cell surface (Gal-9+ Th cells) secrete Gal-9 upon T cell receptor (TCR) stimulation, but other CD4 T cells do not, although they express an equivalent amount of intracellular Gal-9. Gal-9+ Th cells expressed interleukin (IL)-10 and transforming growth factor (TGF)-β but did not express Foxp3. In a co-culture experiment, Gal-9+ Th cells regulated Th17/Treg development in a manner similar to that by exogenous Gal-9, during which the regulation by Gal-9+ Th cells was shown to be sensitive to a Gal-9 antagonist but insensitive to IL-10 and TGF-β blockades. Further elucidation of Gal-9+ Th cells in humans indicates a conserved role of these cells through evolution and implies the possible utility of these cells for diagnosis or treatment of immunological diseases.  相似文献   

20.
The effect of dopamine receptor stimulation on the accumulation of labelled inositol phosphates in rat striatal slices under basal and stimulated conditions was examined following preincubation with [3H]inositol. Incubation of striatal slices with the selective D-1 agonist SKF 38393 or the selective D-2 agonist LY 171555 for 5 or 30 min did not affect the basal accumulation of labelled inositol mono-, bis-, tris-, and tetrakisphosphate. Resolution by HPLC of inositol trisphosphate into inositol-1,3,4-tris-phosphate and inositol-1,4,5-trisphosphate isomers revealed that under basal conditions dopamine did not influence the accumulation of inositol-1,4,5-trisphosphate. Depolarisation evoked by KCl, or addition of the muscarinic receptor agonist carbachol, produced a marked increase in the accumulation of labelled inositol phosphates in both the presence and absence of lithium. Addition of dopamine did not reduce the ability of KCl or carbachol to increase inositol phospholipid hydrolysis. In the presence of lithium, dopamine (100 microM) enhanced KCl-stimulated inositol phospholipid hydrolysis, but this effect appears to be mediated by alpha 1 adrenoceptors because it was blocked by prazosin. SKF 38393 (10 microM) or LY 171555 (10 microM) also did not affect carbachol-stimulated inositol phospholipid hydrolysis. These data, in contrast to recent reports, suggest that striatal dopamine receptors do not appear to be linked to inositol phospholipid hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号