首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Profitability of beef production can be increased by genetically improving carcass traits. To construct breeding value evaluations for carcass traits, breed-specific genetic parameters were estimated for carcass weight, carcass conformation and carcass fat in five beef cattle breeds in Finland (Hereford, Aberdeen Angus, Simmental, Charolais and Limousin). Conformation and fat were visually scored using the EUROP carcass classification. Each breed was separately analyzed using a multitrait animal model. A total of 6879–19 539 animals per breed had phenotypes. For the five breeds, heritabilities were moderate for carcass weight (h2=0.39 to 0.48, s.e.=0.02 to 0.04) and slightly lower for conformation (h2=0.30 to 0.44, s.e.=0.02 to 0.04) and carcass fat (h2=0.29 to 0.44, s.e.=0.02 to 0.04). The genetic correlation between carcass weight and conformation was favorable in all breeds (rG=0.37 to 0.53, s.e.=0.04 to 0.05), heavy carcasses being genetically more conformed. The phenotypic correlation between carcass weight and carcass fat was moderately positive in all breeds (rP=0.21 to 0.32), implying that increasing carcass weight was related to increasing fat levels. The respective genetic correlation was the strongest in Hereford (rG=0.28, s.e.=0.05) and Angus (rG=0.15, s.e.=0.05), the two small body-sized British breeds with the lowest conformation and the highest fat level. The correlation was weaker in the other breeds (rG=0.08 to 0.14). For Hereford, Angus and Simmental, more conformed carcasses were phenotypically fatter (rP=0.11 to 0.15), but the respective genetic correlations were close to zero (rG=0.05 to 0.04). In contrast, in the two large body-sized and muscular French breeds, the genetic correlation between conformation and fat was negative and the phenotypic correlation was close to zero or negative (Charolais: rG=0.18, s.e.=0.06, rP=0.02; Limousin: rG=0.56, s.e.=0.04, rP=0.13). The results indicate genetic variation for the genetic improvement of the carcass traits, favorable correlations for the simultaneous improvement of carcass weight and conformation in all breeds, and breed differences in the correlations of carcass fat.  相似文献   

2.
One of the main goals of selection schemes in beef cattle populations is to increase carcass weight at slaughter. Live weights at different growth stages are frequently used as selection criteria under the hypothesis that they usually have a high and positive genetic correlation with weight at slaughter. However, the presence of compensatory growth may bias the prediction ability of early weights for selection purposes. Recursive models may represent an interesting alternative for understanding the genetic and phenotypic relationship between weight traits during growth. For the purposes of this study, the analysis was performed for three different set of data from the Pirenaica beef cattle breed: weight at 120 days (W120) and at 210 days (W210); W120 and carcass weight at slaughter at 365 days (CW365); W210 and CW365. The number of records for each analysis was 8592, 4648 and 3234, respectively. A pedigree composed of 56323 individuals was also included. The statistical model comprised sex, year-season of birth, herd and slaughterhouse, plus a non-linear recursive dependency between traits. The dependency was modeled as a polynomial up to the 4th degree and models were compared using a Logarithm of Conditional Predictive Ordinates. The results of model comparison suggest that the best models were the 3rd degree polynomial for W120-W210 and W120-CW365 and the 2nd degree polynomial for W210-CW365. The posterior mean estimates for heritabilities ranged between 0.29 and 0.44 and the posterior mean estimates of the genetic correlations were null or very low, indicating that the relationship between traits is fully captured by the recursive dependency. The results imply that the predictive ability of the performance of future growth is low if it is only based on records of early weights. The usefulness of slaughterhouse records in beef cattle breeding evaluation is confirmed.  相似文献   

3.
We estimated genetic parameters for various phases of body and testicular growth until 550 days of age in Nelore cattle, using Bayesian inference, including correlation values and error estimates. Weight and scrotal records of 54,182 Nelore animals originating from 18 farms participating in the Brazilian Nelore Breeding Program (PMGRN) were included. The following traits were measured: weight at standard ages of 120 (W120), 210 (W210), 365 (W365), 450 (W450), and 550 (W550) days; weight gain between 120/210 (WG1), 210/365 (WG2), 365/450 (WG3), 450/550 (WG4), 120/365 (WG5), 120/450 (WG6), 120/550 (WG7), 210/450 (WG8), 210/550 (WG9), and 365/550 (WG10) days of age; scrotal circumference at 365 (SC365), 450 (SC450) and 550 (SC550) days of age, and testicular growth between 365/450 (TG1), 450/550 (TG2) and 365/550 (TG3) days of age. The model included contemporary group (current farm, year and two-month period of birth, sex, and management group) and age of dam at calving, divided into classes as fixed effects. The model also included random effects for direct additive, maternal additive and maternal permanent environmental, and residual effects. The direct heritability estimates ranged from 0.23 to 0.39, 0.13 to 0.39 and 0.32 to 0.56 for weights at standard ages, weight gains and testicular measures, respectively. The genetic correlations between weights (0.69 to 0.94) and scrotal circumferences (0.91 to 0.97) measured at standard ages were higher than those between weight gain and testicular growth (0.18 to 0.97 and 0.36 to 0.77, respectively). The weights at standard ages responded more effectively to selection, and also gave strong correlations with the other traits.  相似文献   

4.
Variance components of sperm quality traits were estimated in a paternal line of rabbits selected on the basis of daily weight gain (DG, g/day) between 28 and 63 days of age. Features of the marginal posterior distributions for the genetic variance ratios, variance due to non-additive plus environmental permanent male effects, and variance due to litter of birth effects with respect to phenotypic variance are reported. The correlation between sperm quality traits and the selection criteria were also estimated. Nine sets of two-trait analyses were performed involving 12 908 DG records, 2231 ejaculates corresponding to 412 males, and 14 700 animals in the pedigree file. Heritability values (h2) of sperm quality traits commonly evaluated in a classic spermiogram were 0.18, 0.19, and 0.12 for normal acrosome status (NAR) (%, percentage of sperm with intact acrosome), sperm abnormalities (ANR) (%, percentage of sperm abnormalities), and sperm motility (MOT) (%, percentage of total motile sperm cells), respectively. The h2 of some motion computer-assisted sperm analysis (CASA) Parameters 0.09, 0.11, 0.10, 0.11, 0.11 and 0.11 for average path velocity (VAP) (μm/sec; average path velocity), straight-line velocity (VSL) (μm/sec; straight-line velocity), curvilinear velocity (VCL) (μm/sec; curvilinear velocity), linearity index (LIN) (%, linearity index), amplitude of lateral head displacement (ALH) (μm; amplitude of the lateral head displacement) and straightness (STR) (%, straightness) were also estimated. Permanent environmental effects were lower than the corresponding values of h2 and varied between 0.04 and 0.14. Genetic correlations between DG and sperm traits showed a high interval of highest density of 95% (HPD)95% (interval of highest density of 95%). However, there is some consistent evidence of the negativity of the genetic correlations of DG with NAR and MOT (−0.40 and −0.53, respectively). Permanent correlations were low, including the zero in the HPD95%. Litter birth correlations between DG with LIN and STR showed that a favorable effect for growth could be detrimental for them (−0.47 and −0.53). Therefore, as the magnitude of the genetic correlations does not seem very high, it may be possible to define a selection index, including some sperm quality traits that allow improvement of DG without diminishing the semen quality.  相似文献   

5.

Background

Many studies have provided evidence of the existence of genetic heterogeneity of environmental variance, suggesting that it could be exploited to improve robustness and uniformity of livestock by selection. However, little is known about the perspectives of such a selection strategy in beef cattle.

Methods

A two-step approach was applied to study the genetic heterogeneity of residual variance of weight gain from birth to weaning and long-yearling weight in a Nellore beef cattle population. First, an animal model was fitted to the data and second, the influence of additive and environmental effects on the residual variance of these traits was investigated with different models, in which the log squared estimated residuals for each phenotypic record were analyzed using the restricted maximum likelihood method. Monte Carlo simulation was performed to assess the reliability of variance component estimates from the second step and the accuracy of estimated breeding values for residual variation.

Results

The results suggest that both genetic and environmental factors have an effect on the residual variance of weight gain from birth to weaning and long-yearling in Nellore beef cattle and that uniformity of these traits could be improved by selecting for lower residual variance, when considering a large amount of information to predict genetic merit for this criterion. Simulations suggested that using the two-step approach would lead to biased estimates of variance components, such that more adequate methods are needed to study the genetic heterogeneity of residual variance in beef cattle.  相似文献   

6.

Background

In national evaluations, direct genomic breeding values can be considered as correlated traits to those for which phenotypes are available for traditional estimation of breeding values. For this purpose, estimates of the accuracy of direct genomic breeding values expressed as genetic correlations between traits and their respective direct genomic breeding values are required.

Methods

We derived direct genomic breeding values for 2239 registered Limousin and 2703 registered Simmental beef cattle genotyped with either the Illumina BovineSNP50 BeadChip or the Illumina BovineHD BeadChip. For the 264 Simmental animals that were genotyped with the BovineHD BeadChip, genotypes for markers present on the BovineSNP50 BeadChip were extracted. Deregressed estimated breeding values were used as observations in weighted analyses that estimated marker effects to derive direct genomic breeding values for each breed. For each breed, genotyped individuals were clustered into five groups using K-means clustering, with the aim of increasing within-group and decreasing between-group pedigree relationships. Cross-validation was performed five times for each breed, using four groups for training and the fifth group for validation. For each trait, we then applied a weighted bivariate analysis of the direct genomic breeding values of genotyped animals from all five validation sets and their corresponding deregressed estimated breeding values to estimate variance and covariance components.

Results

After minimizing relationships between training and validation groups, estimated genetic correlations between each trait and its direct genomic breeding values ranged from 0.39 to 0.76 in Limousin and from 0.29 to 0.65 in Simmental. The efficiency of selection based on direct genomic breeding values relative to selection based on parent average information ranged from 0.68 to 1.28 in genotyped Limousin and from 0.51 to 1.44 in genotyped Simmental animals. The efficiencies were higher for 323 non-genotyped young Simmental animals, born after January 2012, and ranged from 0.60 to 2.04.

Conclusions

Direct genomic breeding values show promise for routine use by Limousin and Simmental breeders to improve the accuracy of predicted genetic merit of their animals at a young age and increase response to selection. Benefits from selecting on direct genomic breeding values are greater for breeders who use natural mating sires in their herds than for those who use artificial insemination sires. Producers with unregistered commercial Limousin and Simmental cattle could also benefit from being able to identify genetically superior animals in their herds, an opportunity that has in the past been limited to seed stock animals.  相似文献   

7.
We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.  相似文献   

8.
This research investigated two sources of sire-specific genetic effects on the birth weight (BWT) and weaning weight (WWT) of Bruna dels Pirineus beef calves. More specifically, we focused on the influence of genes located in the non-autosomal region of the Y chromosome and the contribution of paternal imprinting. Our analyses were performed on 8130 BWT and 1245 WWT records from 12 and 2 purebred herds, respectively, they being collected between years 1986 and 2010. All animals included in the study were registered in the Yield Recording Scheme of the Bruna dels Pirineus breed. Both BWT and WWT were analyzed using a univariate linear animal model, and the relevance of paternal imprinting and Y chromosome-linked effects were checked by the deviance information criterion (DIC). In addition to sire-specific and direct genetic effects, our model accounted for random permanent effects (dam and herd-year-season) and three systematic sources of variation, that is, sex of the calf (male or female), age of the dam at calving (six levels) and birth type (single or twin). Both weight traits evidenced remarkable effects from the Y chromosome, whereas paternal imprinting was only revealed in WWT. Note that differences in DIC between the preferred model and the remaining ones exceed 39 000 and 2 800 000 DIC units for BWT and WWT, respectively. It is important to highlight that Y chromosome accounted for ∼2% and ∼6% of the total phenotypic variance for BWT and WWT, respectively, and paternal imprinting accounted for ∼13% of the phenotypic variance for WWT. These results revealed two relevant sources of sire-specific genetic variability with potential contributions to the current breeding scheme of the Bruna dels Pirineus beef cattle breed; moreover, these sire-specific effects could be included in other beef cattle breeding programs or, at least, they must be considered and appropriately analyzed.  相似文献   

9.
In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and relationship in 134 samples belonging to two native cattle breeds from the Yunnan province of China (DeHong cattle and DiQing cattle) and four introduced beef cattle breeds (Brahman, Simmental, MurryGrey, and ShortHorn). Ten primers were used, and a total of 84 bands were scored, of which 63 bands (75.0%) were polymorphic. The genetic distance matrix was obtained by proportions of shared fragment. The results indicate that the Yunnnan DeHong cattle breed is closely related to the Brahman (Bos indicus), and the Yunnan DiQing cattle breed is closely related to the Simmental, ShortHorn, and MurryGrey (Bos taurus) breeds. Our results imply that Bos indicus and Bos taurus were the two main origins of Yunnan native cattle. The results also provide the basic genetic materials for conservation of cattle resources and crossbreeding of beef cattle breeds in South China.  相似文献   

10.
Growth hormone (GH), insulin-like growth factors 1 and 2 (IGF1 and IGF2) and their associated binding proteins and transmembrane receptors (GHR, IGF1R and IGF2R) play an important role in the physiology of mammalian growth. The objectives of the present study were to estimate the allele and genotype frequencies of microsatellite markers located in the 5'-regulatory region of the IGF1 and GHR genes in beef cattle belonging to different genetic groups and to determine effects of these markers on growth and carcass traits in these animals under an intensive production system. For this purpose, genotyping was performed on 384 bulls including 79 Nellore, 30 Canchim (5/8 Charolais + 3/8 Zebu) and 275 crossbred animals originating from crosses of Simmental (1/2 Simmental, n = 30) and Angus (1/2 Angus, n = 245) sires with Nellore females. The effects of substituting L allele for S allele of GHR microsatellite across Nellore, Canchim and 1/2 Angus were significant for weight gain and body weight (P < 0.05). The IGF1 microsatellite allele substitutions of 229 for 225 within Nellore group and of 225 for 229 within 1/2 Angus were not significant for any of the traits.  相似文献   

11.
Improving feed efficiency is a key breeding goal in the beef cattle industry. In this study, we estimated the genetic parameters for feed efficiency and carcass traits in Senepol cattle raised in tropical regions. Various indicators of feed efficiency [gain to feed ratio (G:F), feed conversion ratio (FCR), residual weight gain (RG), residual intake and body weight gain (RIG), and residual feed intake (RFI)] as well as growth [final BW, average daily gain (ADG), and DM intake (DMI)], and carcass [rib-eye area (REA), backfat thickness (BF), intramuscular fat score, and carcass conformation score] traits were included in the study. After data editing, records from 1 393 heifers obtained between 2009 and 2018 were used for the analyses. We fitted an animal model that included contemporary group (animals from the same farm that were evaluated in the same test season) as the fixed effect, and a linear effect of animal age at the beginning of the test as a covariate; in addition to random direct additive genetic and residual effects. The (co)variance components were estimated by Bayesian inference in uni- and bivariate analyses. Our results showed that feed efficiency indicators derived from residual variables such as RG, RIG, and RFI can be improved through genetic selection (h2 = 0.14 ± 0.06, 0.13 ± 0.06, and 0.20 ± 0.08, respectively). Variables calculated as ratios such as G:F and FCR were more influenced by environmental factors (h2 = 0.08 ± 0.05 and 0.09 ± 0.05), and were, therefore, less suitable for use in breeding programs. The traits with the greatest and impact on genetic progress in feed efficiency were ADG, REA, and BF. The traits with the greatest and least impact on growth and carcass traits were RG and RFI, respectively. Selection for feed efficiency will result in distinct overall effects on the growth and carcass traits of Senepol heifers. Direct selection for lower RFI may reduce DMI and increase carcass fatness at the finishing stage, but it might also result in reduced growth and muscle deposition. Residual BW gain is associated with the highest weight gain and zero impact on REA and BF, however, it is linked to higher feed consumption. Thus, the most suitable feed efficiency indicator was RIG, as it promoted the greatest decrease in feed intake concomitant with faster growth, with a similar impact on carcass traits when compared to the other feed efficiency indicators.  相似文献   

12.
Scrotal circumference (SC) was measured on 7,918 2-yr-old Angus, Charolais, horned and polled Herefords, Limousin, Shorthorn, and Simmental bulls presented to culling committees at six show/sales between 1977 and 1983. Only SC data from bulls within the age range of 24 +/- 4 mo were used. Scrotal circumference data were corrected across breeds for the effects of location-year and sire and were adjusted to a common bull age of 730 d. The adjusted mean SC (+/- SE) for 2-yr-old beef bulls was Simmental, 38.8 +/- 0.10 cm (n = 540); Aberdeen Angus, 37.2 +/- 0.09 cm (n = 629); Charolais, 36.3 +/- 0.09 cm (n = 499); horned Hereford, 36.1 +/- 0.03 cm (n = 3,769); polled Hereford, 35.6 +/- 0.04 cm (n = 2,170); Shorthorn, 34.9 +/- 0.11 cm (n = 231); and Limousin, 32.2 +/- 0.18 cm (n = 80). The authors' recommendations of minimum acceptable SC for 2-yr-old beef bulls are Simmental, 36.0 cm; Angus and Charolais, 35.0 cm; horned and polled Herefords and Shorthorn, 34.0 cm; and Limousin, 33.0 cm.  相似文献   

13.
Artificial selection has greatly improved the beef production performance and changed its genetic basis. High-density SNP markers provide a way to track these changes and use selective signatures to search for the genes associated with artificial selection. In this study, we performed extended haplotype homozygosity (EHH) tests based on Illumina BovineSNP50 (54 K) Chip data from 942 Simmental cattle to identify significant core regions containing selective signatures, then verified the biological significance of these identified regions based on some commonly used bioinformatics analyses. A total of 224 regions over the whole genome in Simmental cattle showing the highest significance and containing some important functional genes, such as GHSR, TG and CANCNA2D1 were chosen. We also observed some significant terms in the enrichment analyses of second GO terms and KEGG pathways, indicating that these genes are associated with economically relevant cattle traits. This is the first detection of selection signature in Simmental cattle. Our findings significantly expand the selection signature map of the cattle genome, and identify functional candidate genes under positive selection for future genetic research.  相似文献   

14.
Improving meat quality is the best way to enhance profitability and strengthen competitiveness in beef industry. Identification of genetic variants that control beef quality traits can help breeders design optimal breeding programs to achieve this goal. We carried out a genome-wide association study for meat quality traits in 1141 Simmental cattle using the Illumina Bovine HD 770K SNP array to identify the candidate genes and genomic regions associated with meat quality traits for beef cattle, including fat color, meat color, marbling score, longissimus muscle area, and shear force. In our study, we identified twenty significant single-nucleotide polymorphisms (SNPs) (p < 1.47 × 10?6) associated with these five meat quality traits. Notably, we observed several SNPs were in or near eleven genes which have been reported previously, including TMEM236, SORL1, TRDN, S100A10, AP2S1, KCTD16, LOC506594, DHX15, LAMA4, PREX1, and BRINP3. We identified a haplotype block on BTA13 containing five significant SNPs associated with fat color trait. We also found one of 19 SNPs was associated with multiple traits (shear force and longissimus muscle area) on BTA7. Our results offer valuable insights to further explore the potential mechanism of meat quality traits in Simmental beef cattle.  相似文献   

15.
Use of embryo transfer can lead to increases in rates of genetic improvement from selection programs from as little as 5% to a maximum of near 100%, depending on species, trait, and extent of use of other tools such as A.I. In general, embryo transfer will have much less impact on rates of genetic improvement than A.I., and in a dairy cattle program where A.I. is used effectively, embryo transfer is likely to add less than 10% to rate of genetic improvement. The potential for increasing rate of genetic improvement appears to be greater in beef cattle. In any species with low reproductive rate, embryo transfer offers a potential means of rapidly increasing numbers of animals of a breed, strain, mutant genotype or group exceeding a stringent threshold; such use may be of considerable value to a specific genetic research or multiplication program. Maximizing selection intensity through combined use of A.I. and embryo transfer can lead to a rapid increase in inbreeding, and steps should be taken to avoid this in any population which it is desired to maintain in the long term. Embryo transfer offers an effective tool for research on maternal-fetal and fetal-fetal interactions, and in this way can make important indirect contributions to more efficient breeding programs. With improved embryo storage capability, embryo transfer has the potential for useful contributions in the areas of transfer of germ plasm between countries, preservation of rare breeds, and provision of genetically stable control populations.  相似文献   

16.
Age-of-dam adjustment factors are used to preadjust birth and weaning weight data for national beef cattle genetic evaluations. Adjustments are used in order to make the means of the different age-of-dam subclasses similar so that a fair comparison of animals can be performed. A review was made of various research studies that have estimated age-of-dam adjustment factors for birth weight and weaning weight of beef cattle. In general, birth weight age-of-dam adjustment factors are the same across the sexes, but weaning weight age-of-dam adjustment factors differ across the sexes, with heifer calves receiving smaller adjustments than their male counterparts. Additionally, adjustment factors vary greatly across breeds. Preadjustment of records is difficult to do because a perfect estimate of adjustments is not possible. A more appropriate method for adjusting for age-of-dam is to simultaneously adjust during national genetic evaluations.  相似文献   

17.
Some analytical and simulated criteria were used to determine whether a priori genetic differences among groups, which are not accounted for by the relationship matrix, ought to be fitted in models for genetic evaluation, depending on the data structure and the accuracy of the evaluation. These criteria were the mean square error of some extreme contrasts between animals, the true genetic superiority of animals selected across groups, i.e. the selection response, and the magnitude of selection bias (difference between true and predicted selection responses). The different statistical models studied considered either fixed or random genetic groups (based on six different years of birth) versus ignoring the genetic group effects in a sire model. Including fixed genetic groups led to an overestimation of selection response under BLUP selection across groups despite the unbiasedness of the estimation, i.e. despite the correct estimation of differences between genetic groups. This overestimation was extremely important in numerical applications which considered two kinds of within-station progeny test designs for French purebred beef cattle AI sire evaluation across years: the reference sire design and the repeater sire design. When assuming a priori genetic differences due to the existence of a genetic trend of around 20% of genetic standard deviation for a trait with h2 = 0.4, in a repeater sire design, the overestimation of the genetic superiority of bulls selected across groups varied from about 10% for an across-year selection rate p = 1/6 and an accurate selection index (100 progeny records per sire) to 75% for p = 1/2 and a less accurate selection index (20 progeny records per sire). This overestimation decreased when the genetic trend, the heritability of the trait, the accuracy of the evaluation or the connectedness of the design increased. Whatever the data design, a model of genetic evaluation without groups was preferred to a model with genetic groups when the genetic trend was in the range of likely values in cattle breeding programs (0 to 20% of genetic standard deviation). In such a case, including random groups was pointless and including fixed groups led to a large overestimation of selection response, smaller true selection response across groups and larger variance of estimation of the differences between groups. Although the genetic trend was correctly predicted by a model fitting fixed genetic groups, important errors in predicting individual breeding values led to incorrect ranking of animals across groups and, consequently, led to lower selection response.  相似文献   

18.
cattle (1/2 Brahman, 1/4 Murray Grey and 1/4 Yunnan Yellow cattle) has been inter se breeding since 1980s. Genetic diversity of BMY cattle was extensively investigated using 16 microsatellite markers. A total of 130 microsatellite alleles and high allele size variance were detected. All loci displayed high genetic diversity with overall mean of N a = 8.13, PIC = 0.7224 and H e = 0.7666, which were higher than those of many other beef breeds. The allele-sharing neighbour-joining tree clearly displayed the new genotypic combinations and the minglement from both BMY cattle and Brahman. The results provided the genetic information to match the standards of new beef breed in South China.  相似文献   

19.
Body weight is a complex trait in cattle associated with commonly used commercial breeding measurements related to growth. Although many quantitative trait loci (QTL) for body weight have been identified in cattle so far, searching for genetic determinants in different breeds or environments is promising. Therefore, we carried out a genome‐wide association study (GWAS) in two cattle populations from the Russian Federation (Siberian region) using the GGP HD150K array containing 139 376 single nucleotide polymorphism (SNP) markers. Association tests for 107 550 SNPs left after filtering revealed five statistically significant SNPs on BTA5, considering a false discovery rate of less than 0.05. The chromosomal region containing these five SNPs contains the CCND2 gene, which was previously associated with average daily weight gain and body mass index in US beef cattle populations and in humans respectively. Our study is the first GWAS for body weight in beef cattle populations from the Russian Federation. The results provided here suggest that, despite the existence of breed‐ and species‐specific QTL, the genetic architecture of body weight could be evolutionarily conserved in mammals.  相似文献   

20.
T. Chang  J. Xia  L. Xu  X. Wang  B. Zhu  L. Zhang  X. Gao  Y. Chen  J. Li  H. Gao 《Animal genetics》2018,49(4):312-316
A genome‐wide association study (GWAS) was conducted for two carcass traits in Chinese Simmental beef cattle. The experimental population consisted of 1301 individuals genotyped with the Illumina BovineHD SNP BeadChip (770K). After quality control, 671 990 SNPs and 1217 individuals were retained for the GWAS. The phenotypic traits included carcass weight and bone weight, which were measured after the cattle were slaughtered at 16 to 18 months of age. Three statistical models—a fixed polygene model, a random polygene model and a composite interval mapping polygene model—were used for the GWAS. The genome‐wide significance threshold after Bonferroni correction was 7.44E‐08 (= 0.05/671 990). In this study, we detected eight and seven SNPs significantly associated with carcass weight and bone weight respectively. In total, 11 candidate genes were identified within or close to these significant SNPs. Of these, we found several novel candidate genes, including PBX1, GCNT4, ALDH1A2, LCORL and WDFY3, to be associated with carcass weight and bone weight in Chinese Simmental beef cattle, and their functional roles need to be verified in further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号