首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

We previously reported that sevoflurane anesthesia reversibly suppresses the expression of the clock gene, Period2 (Per2), in the mouse suprachiasmatic nucleus (SCN). However, the molecular mechanisms underlying this suppression remain unclear. In this study, we examined the possibility that sevoflurane suppresses Per2 expression via epigenetic modification of the Per2 promoter.

Methods

Mice were anesthetized with a gas mixture of 2.5% sevoflurane/40% oxygen at a 6 L/min flow for 1 or 4 h. After termination, brains were removed and samples of SCN tissue were derived from frozen brain sections. Chromatin immunoprecipitation (ChIP) assays using anti-acetylated-histone antibodies were performed to investigate the effects of sevoflurane on histone acetylation of the Per2 promoter. Interaction between the E’-box (a cis-element in the Per2 promoter) and CLOCK (the Clock gene product) was also assessed by a ChIP assay using an anti-CLOCK antibody. The SCN concentration of nicotinamide adenine dinucleotide (NAD+), a CLOCK regulator, was assessed by liquid chromatography-mass spectrometry.

Results

Acetylation of histone H4 in the proximal region of the Per2 promoter was significantly reduced by sevoflurane. This change in the epigenetic profile of the Per2 gene was observed prior to suppression of Per2 expression. Simultaneously, a reduction in the CLOCK-E’-box interaction in the Per2 promoter was observed. Sevoflurane treatment did not affect the concentration of NAD+ in the SCN.

Conclusions

Independent of NAD+ concentration in the SCN, sevoflurane decreases CLOCK binding to the Per2 promoter E’-box motif, reducing histone acetylation and leading to suppression of Per2 expression.  相似文献   

2.
Maternal feeding controls fetal biological clock   总被引:1,自引:0,他引:1  

Background

It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD) cycle.

Methodology/Principal Findings

To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN) and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy.

Conclusions/Significance

Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.  相似文献   

3.

Background

The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.

Methodology/Principal Findings

Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH2) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.

Conclusions/Significance

The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.  相似文献   

4.

Background

The suprachiasmatic nucleus (SCN), the master circadian clock, is a heterogeneous oscillator network, yet displays a robust synchronization dynamics. Recent single-cell bioluminescent imaging revealed temporal gradients in circadian clock gene expression in the SCN ex vivo. However, due to technical difficulty in biological approaches to elucidate the entire network structure of the SCN, characteristics of the gradient, which we refer to as phase wave, remain unknown.

Methodology/Principal Findings

We implemented new approaches, i.e., quantitative analysis and model simulation to characterize the phase waves in Per2::Luciferase clock reporter gene expression of the rat SCN slice. Our quantitative study demonstrated not only a high degree of synchronization between the neurons and regular occurrence of the phase wave propagation, but also a significant amount of phase fluctuations contained in the wave. In addition, our simulations based on local coupling model suggest that the intercellular coupling strength estimated by the model simulations is significantly higher than the critical value for generating the phase waves. Model simulations also suggest that heterogeneity of the SCN neurons is one of the main factors causing the phase wave fluctuations. Furthermore, robustness of the SCN network against dynamical noise and variation of the natural frequencies inherent in these neurons was quantitatively assessed.

Conclusions/Significance

To our knowledge, this is the first quantitative evaluation of the phase wave and further characterization of the SCN neuronal network features generating the wave i.e., intercellular synchrony, phase fluctuation, strong local coupling, heterogeneous periodicity and robustness. Our present study provides an approach, which will lead to a comprehensive understanding of mechanistic and/or biological significance of the phase wave in the central circadian oscillatory system.  相似文献   

5.

Background

The cardiac sodium channel (Nav1.5) controls cardiac excitability. Accordingly, SCN5A mutations that result in loss-of-function of Nav1.5 are associated with various inherited arrhythmia syndromes that revolve around reduced cardiac excitability, most notably Brugada syndrome (BrS). Experimental studies have indicated that Nav1.5 interacts with the cytoskeleton and may also be involved in maintaining structural integrity of the heart. We aimed to determine whether clinical evidence may be obtained that Nav1.5 is involved in maintaining cardiac structural integrity.

Methods

Using cardiac magnetic resonance (CMR) imaging, we compared right ventricular (RV) and left ventricular (LV) dimensions and ejection fractions between 40 BrS patients with SCN5A mutations (SCN5a-mut-positive) and 98 BrS patients without SCN5A mutations (SCN5a-mut-negative). We also studied 18 age/sex-matched healthy volunteers.

Results

SCN5a-mut-positive patients had significantly larger end-diastolic and end-systolic RV and LV volumes, and lower LV ejection fractions, than SCN5a-mut-negative patients or volunteers.

Conclusions

Loss-of-function SCN5A mutations are associated with dilatation and impairment in contractile function of both ventricles that can be detected by CMR analysis.  相似文献   

6.
7.
8.
9.
10.

Background

Casein kinase 1 delta (CK1δ) plays a more prominent role in the regulation of circadian cycle length than its homologue casein kinase 1 epsilon (CK1ε) in peripheral tissues such as liver and embryonic fibroblasts. Mice lacking CK1δ die shortly after birth, so it has not been possible to assess the impact of loss of CK1δ on behavioral rhythms controlled by the master circadian oscillator in the suprachiasmatic nuclei (SCN).

Methodology/Principal Findings

In the present study, mPER2::LUCIFERASE bioluminescence rhythms were monitored from SCN explants collected from neonatal mice. The data demonstrate that SCN explants from neonatal CK1δ-deficient mice oscillate, but with a longer circadian period than littermate controls. The cycle length of rhythms recorded from neonatal SCN explants of CK1ε-deficient mice did not differ from control explants.

Conclusions/Significance

The results indicate that CK1δ plays a more prominent role than CK1ε in the maintenance of 24-hour rhythms in the master circadian oscillator.  相似文献   

11.

Purpose

The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters.

Methods

First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, 124I PET/SPECT and CLI. Expression of the imaging reporter genes was validated in vitro using 99mTcO4 radioligand uptake experiments and BLI. Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell''s differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-animal PET, CLI and BLI.

Results

The expression of both imaging reporter genes was functional and specific. An elution of 99mTcO4 from the cells was observed, with 31% retention after 3 h. After labeling cells with 124I in vitro, a significantly higher CLI signal was noted in hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or subcutaneously in mice, using 124I small-animal PET, CLI and BLI.

Conclusions

This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and future clinical applications.  相似文献   

12.

Background

Hepatocellular carcinoma (HCC) is the most commonly occurring primary liver cancer and ranks as the fifth most frequently occurring cancer, overall, and the third leading cause of cancer deaths, worldwide. At present, effective therapeutic options available for HCC are limited; consequently, the prognosis for these patients is poor. Our aim in the present study was to identify a novel target for antibody therapy against HCC.

Methodology/Principal Findings

We used Western blot and flow cytometric and immunocytochemical analyses to investigate the regulation of FGFR1 expression by interferon-α/β in several human hepatic cancer cell lines. In addition, we tested the efficacy of combined treatment with anti-FGFR1 monoclonal antibody and interferon-α/β in a murine xenograft model of human HCC. We found that interferon-α/β induces expression of FGFR1 in human HCC cell lines, and that an anti-FGFR1 monoclonal antibody (mAb) targeting of the induced FGFR1 can effectively inhibit growth and survival of HCC cells in vitro and in vivo. Moreover, the combination of interferon-α, anti-FGFR1 mAb and peripheral blood mononuclear cells (PBMCs) exerted a significant antitumor effect in vitro.

Conclusions

Our results suggest that the combined use of an anti-FGFR1 antibody and interferon-α/β is a promising approach to the treatment of HCC.  相似文献   

13.

Background and Aims

Several reports described the migration of human mesenchymal stromal cells (MSCs) towards tumor-released factors. Autocrine motility factor (AMF) is produced by several tumors including hepatocellular carcinoma (HCC). The aim of this study was to analyze AMF involvement on MSC migration towards human HCC.

Methods

Production of AMF by HCC tumors was evaluated by western analysis. The effects of AMF on MSCs from different sources (bone marrow, adipose tissue and perivascular cells from umbilical cord) were analyzed using in vitro migration assay; metalloproteinase 2 (MMP2) activity and expression of critical genes were studied by zymography and qRT-PCR, respectively. To assess AMF involvement on the in vivo MSC migration, noninvasive fluorescence imaging was performed. To test the effect of AMF-primed MSCs on tumor development, in vitro proliferation and spheroids growth and in vivo tumor volume were evaluated.

Results

AMF produced by HCC was found to induce migration of different MSCs in vitro and to enhance their MMP2 activity. Stimulation of MSCs with recombinant AMF (rAMF) also induced the in vitro adhesion to endothelial cells in coincidence with changes in the expression levels of MMP3, AMF receptor, caveolin-1, and -2 and GDI-2. Importantly, stimulation of MSCs with rAMF increased the in vivo migration of MSCs towards experimental HCC tumors. AMF-priming of MSCs did not induce a pro-tumorigenic effect on HCC cells neither in vivo nor in vitro.

Conclusion

AMF plays a role in MSC recruitment towards HCC. However, its ability to increase MSC migration to HCC for therapeutic purposes merits further evaluation.  相似文献   

14.
The inhalation anesthetic sevoflurane reversibly suppresses Period2 (Per2) mRNA expression in the suprachiasmatic nucleus (SCN). However, a discrepancy exists in phase shifting of the Per2 expression rhythm between sevoflurane application in rats (in vivo application) and explants (ex vivo application). This investigation aimed to resolve this issue. First, tissues from the SCN, choroid plexus in the lateral ventricle (CP-LV), and choroid plexus in the fourth ventricle (CP–4V), which are robust circadian oscillators, and pineal gland (PG) tissue, which is a circadian influencer, were prepared from Per2::dLuc transgenic rats. Significant phase responses of bioluminescence rhythms for different preparation times were monitored in the four tissue explant types. Second, tissue explants were prepared from anesthetized rats immediately after sevoflurane treatment, and bioluminescence rhythms were compared with those from non-anesthetized rats at various preparation times. Regarding bioluminescence rhythm phases, in vivo application of sevoflurane induced phase shifts in CP-LV, CP-4V, and PG explants according to the times that rats were administered anesthesia and the explants were prepared. Phase shifts in these peripheral explants were withdrawn due to the recovery period after the anesthetic treatment, which suggests that peripheral tissues require the assistance of related tissues or organs to correct phase shifts. In contrast, no phase shifts were observed in SCN explants. These results indicated that SCN explants can independently correct bioluminescence rhythm phase. The bioluminescence intensity of explants was also decreased after in vivo sevoflurane application. The suppressive effects on SCN explants were withdrawn due to a recovery day after the anesthetic treatment. In contrast, the suppressive effects on the bioluminescence intensities of CP-LV, CP-4V, and PG explants remained at 30 days after anesthesia administration. These results suggest that anesthetic suppression is imprinted within the peripheral tissues.  相似文献   

15.

Introduction

In vitro apoptosis of peripheral monocytes in rheumatoid arthritis (RA) is disturbed and influenced by cytokine production and transmembrane TNF (tmTNF) reverse signaling. The goal of the study was the analysis of the predictive value of the rate of in vitro apoptosis for the therapeutic response to anti-TNF treatment.

Methods

Spontaneous and tmTNF reverse signaling-induced apoptosis were determined in vitro in monocytes from 20 RA patients prior to initiation of therapeutic TNF inhibition with etanercept, and the subsequent clinical response was monitored.

Results

Spontaneous in vitro apoptosis was significantly reduced in RA patients compared to controls. Deficiency in spontaneous apoptosis was associated with an insufficient therapeutic response according to the European League Against Rheumatism (EULAR) response criteria and less reduction of the disease activity determined by disease activity score (DAS) 28. High susceptibility to reverse signaling-induced apoptosis was also associated with less efficient reduction in the DAS28. Of note, a strong negative correlation between the two apoptotic parameters was discernible, possibly indicative of two pathogenetically relevant processes counter-regulating each other.tmTNF reverse signaling induced in vitro production of soluble IL1-RI and IL-1RII only in monocytes not deficient in spontaneous apoptosis, and the levels of soluble IL1-RII were found to be predictive of a good clinical response to Etanercept.

Conclusion

Although tmTNF reverse signaling is able to induce apoptosis of RA monocytes in vitro, this process appears to occur in vitro preferentially in patients with suboptimal therapeutic response. Resistance to spontaneous in vitro apoptosis, in contrast, is a predictor of insufficient response to treatment.  相似文献   

16.

Background

Huntington''s disease (HD) is caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein. A number of differentially-expressed protein molecules have been identified in striatum of HD animal models. Here we examined if the expression changes could be visualized in the peripheral leukocytes of HD patients and pre-symptomatic HD (PreHD) carriers.

Methods and findings

The expression levels of 17 candidate genes that differentially expressed in striatum between transgenic HD and wild-type mice in literature were measured in the peripheral leukocytes of 4 PreHD carriers, 16 HD patients and 20 healthy controls. Four genes majorly involved in metabolism and oxidative stress response, including AHCY1, ACO2, OXCT1 and CAP1, demonstrated consistent downregulation in peripheral leukocytes of both PreHD carriers and HD patients, while UCP2 was only down-regulated in HD patients.

Conclusion

These results provide potential peripheral biomarkers to indicate disease onset in preclinical stage, and to monitor the efficacy of early treatment. Further studies of a large series of preHD carriers and symptomatic HD patients will be warranted to verify the findings and examine if these markers correlate with clinical features.  相似文献   

17.
18.

Background

Intra-lesional injections of corticosteroids, interferon, and chemotherapeutic drugs are currently the most popular treatments of hypertrophic scar formation. However, these drugs can only be used after HS is formed, and not during the inflammatory phase of wound healing, which regulates the HS forming process.

Objective

To investigate a new, effective, combining therapeutic and safe drug for early intervention and treatment for hypertrophic scars.

Methods

Cell viability assay and flow cytometric analysis were studied in vitro. Animal studies were done to investigate the combining therapeutic effects of 20(S)-ginsenoside Rg3 (Rg3) on the inflammatory phase of wound healing and HS formation.

Results

In vitro studies showed that Rg3 can inhibit HS fibroblasts proliferation and induce HSF apoptosis in a concentration-dependent manner. In vivo studies demonstrated that Rg3 can limit the exaggerated inflammation, and do not delay the wound healing process, which indicates that Rg3 could be used as an early intervention to reduce HS formation. Topical injection of 4 mg/mL Rg3 can reduce HS formation by 34%. Histological and molecular studies revealed that Rg3 injection inhibits fibroblasts proliferation thus reduced the accumulation of collagen fibers, and down-regulates VEGF expression in the HS tissue.

Conclusion

Rg3 can be employed as an early intervention and a combining therapeutic drug to reduce inflammation and HS formation as well.  相似文献   

19.

Background

Membranous nephropathy (MN) is a common cause of nephrotic syndrome that may progress to end-stage renal disease (ESRD). The formation of MN involves the in situ formation of subepithelial immune deposits and leads to albuminuria; however, the underlying mechanism of how MN leads to ESRD remains unclear. The aim of this study was to investigate the expression and biological functions of phosphotriesterase-related protein (PTER) in MN.

Results

In the progression of MN, the expression of PTER increased significantly and was mainly expressed in the renal tubular cells. Both mRNA and protein expression levels of PTER were increased in a concentration- and time-dependent manner in the in vitro albuminuria tubular cell model. Silencing the expression of PTER by RNA interference diminished albuminuria-induced inflammatory and pro-fibrotic cytokines production.

Conclusions

Our findings reveal that PTER may sense albuminuria in the progression of MN, induce tubular cell activation and lead to ESRD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号