首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxygen has two faces. On one side it is the terminal electron acceptor of aerobic respiration – the most efficient engine of energy metabolism. On the other hand, oxygen is toxic because the reduction of molecular O2 creates reactive oxygen species such as the superoxide anion, peroxide, and the hydroxyl radical. Probably most prokaryotes, and virtually all eukaryotes, depend on oxygen respiration, and we show that the ambiguous relation to oxygen is both an evolutionary force and a dominating factor driving functional interactions and the spatial structure of microbial communities.We focus on microbial communities that are specialised for life in concentration gradients of oxygen, where they acquire the full panoply of specific requirements from limited ranges of PO2 , which also support the spatial organisation of microbial communities. Marine and lake sediments provide examples of steep O2 gradients, which arise because consumption or production of oxygen exceeds transport rates of molecular diffusion. Deep lakes undergo thermal stratification in warm waters, resulting in seasonal anaerobiosis below the thermocline, and lakes with a permanent pycnocline often have permanent anoxic deep water. The oxycline is here biologically similar to sediments, and it harbours similar microbial biota, the main difference being the spatial scale. In sediments, transport is dominated by molecular diffusion, and in the water column, turbulent mixing dominates vertical transport.Cell size determines the minimum requirement of aerobic organisms. For bacteria (and mitochondria), the half‐saturation constant for oxygen uptake ranges within 0.05 – 0.1% atmospheric saturation; for the amoeba Acanthamoeba castellanii it is 0.2%, and for two ciliate species measuring around 150 μm, it is 1‐2 % atmospheric saturation. Protection against O2 toxicity has an energetic cost that increases with increasing ambient O2 tension. Oxygen sensing seems universal in aquatic organisms. Many aspects of oxygen sensing are incompletely understood, but the mechanisms seem to be evolutionarily conserved. A simple method of studying oxygen preference in microbes is to identify the preferred oxygen tension accumulating in O2 gradients. Microorganisms cannot sense the direction of a chemical gradient directly, so they use other devices to orient themselves. Different mechanisms in different prokaryotic and eukaryotic microbes are described. In O2 gradients, many bacteria and protozoa are vertically distributed according to oxygen tension and they show a very limited range of preferred PO2. In some pigmented protists the required PO2 is contingent on light due to photochemically generated reactive oxygen species. In protists that harbour endosymbiotic phototrophs, orientation towards light is mediated through the oxygen production of their photosynthetic symbionts. Oxygen plays a similar role for the distribution of small metazoans (meiofauna) in sediments, but there is little experimental evidence for this. Thus the oxygenated sediments surrounding ventilated animal burrows provide a special habitat for metazoan meiofauna as well as unicellular organisms.  相似文献   

2.
Kristensen  Erik 《Hydrobiologia》2000,421(1):1-24
The present paper reviews the current knowledge on diagenetic carbon transformations at the oxic/anoxic interface in coastal marine sediments. Oxygen microelectrodes have revealed that most coastal sediments are covered only by a thin oxic surface layer. The penetration depth of oxygen into sediments is controlled by the balance between downward transport and consumption processes. Consumption of oxygen is directly or indirectly caused by respiration of benthic organisms. Aerobic organisms have the enzymatic capacity for complete oxidation of organic carbon. Anaerobic decay occurs stepwise, involving several types of bacteria. Large organic molecules are first fermented into small moieties. These are then oxidized completely by anaerobic respirers using a sequence of electron acceptors: Mn4+, NO3 -, Fe3+, SO4 2- and CO2. The quantitative role of each electron acceptor depends on the sediment type and water depth. Since most of the sediment oxygen uptake is due to reoxidation of reduced metabolites, aerobic respiration is of limited importance. It has been suggested that sediments contain three major organic fractions: (1) fresh material that is oxidized regardless of oxygen conditions; (2) oxygen sensitive material that is only degraded in the presence of oxygen; and (3) totally refractory organic matter. Processes occurring at the oxic/anoxic boundaries are controlled by a number of factors. The most important are: (1) temperature, (2) organic supply, (3) light, (4) water currents, and (5) bioturbation. The role of bioturbation is important because the infauna creates a three-dimensional mosaic of oxic/anoxic interfaces in sediments. The volume of oxic burrow walls may be several times the volume of oxic surface sediment. The infauna increases the capacity, but not the overall organic matter decay in sediments, thus decreasing the pool of reactive organic matter. The increase in decay capacity is partly caused by injection of oxygen into the sediment, and thereby enhancing the decay of old, oxygen sensitive organic matter several fold. Finally, some future research directions to improve our understanding of diagenetic processes at the oxic/anoxic interface are suggested.  相似文献   

3.
4.
The northern hemisphere temperate and boreal forests currently provide an important carbon sink; however, current tropospheric ozone concentrations ([O3]) and [O3] projected for later this century are damaging to trees and have the potential to reduce the carbon sink strength of these forests. This meta‐analysis estimated the magnitude of the impacts of current [O3] and future [O3] on the biomass, growth, physiology and biochemistry of trees representative of northern hemisphere forests. Current ambient [O3] (40 ppb on average) significantly reduced the total biomass of trees by 7% compared with trees grown in charcoal‐filtered (CF) controls, which approximate preindustrial [O3]. Above‐ and belowground productivity were equally affected by ambient [O3] in these studies. Elevated [O3] of 64 ppb reduced total biomass by 11% compared with trees grown at ambient [O3] while elevated [O3] of 97 ppb reduced total biomass of trees by 17% compared with CF controls. The root‐to‐shoot ratio was significantly reduced by elevated [O3] indicating greater sensitivity of root biomass to [O3]. At elevated [O3], trees had significant reductions in leaf area, Rubisco content and chlorophyll content which may underlie significant reductions in photosynthetic capacity. Trees also had lower transpiration rates, and were shorter in height and had reduced diameter when grown at elevated [O3]. Further, at elevated [O3], gymnosperms were significantly less sensitive than angiosperms. There were too few observations of the interaction of [O3] with elevated [CO2] and drought to conclusively project how these climate change factors will alter tree responses to [O3]. Taken together, these results demonstrate that the carbon‐sink strength of northern hemisphere forests is likely reduced by current [O3] and will be further reduced in future if [O3] rises. This implies that a key carbon sink currently offsetting a significant portion of global fossil fuel CO2 emissions could be diminished or lost in the future.  相似文献   

5.
The effects of drought on salt marsh sediments from Sapelo Island, Georgia, were examined in flow-through reactor experiments. Three hydrological treatments were employed: a continuously flooded anoxic control, a periodic drought treatment that experienced alternate periods of flooding and drying, and a severe drought treatment, where sediment was exposed to drought (drying) for several weeks and then flooded; the effect of both buffered and non-buffered flooding solutions were examined. In permanently anoxic sediments as well as in sediments exposed to drought, organic carbon oxidation was dominated by SO4 2? reduction (SR) and SR rates increased over time. The shift from anoxic to oxic conditions in drought treatments significantly altered sediment geochemistry and pathways of microbial metabolism. Drought conditions favored suboxic mineralization processes, such as Fe(III) reduction and denitrification, which was fueled by NH4 + oxidation promoted by O2 delivered during drought conditions. Other major drought-induced changes included pH decrease, and altered concentrations of solid phase adsorbed metals.  相似文献   

6.
We investigated the effects of three elevated atmospheric CO2 levels on a Populus deltoides plantation at Biosphere 2 Laboratory in Oracle Arizona. Stable isotopes of carbon have been used as tracers to separate the carbon present before the CO2 treatments started (old C), from that fixed after CO2 treatments began (new C). Tree growth at elevated [CO2] increased inputs to soil organic matter (SOM) by increasing the production of fine roots and accelerating the rate of root C turnover. However, soil carbon content decreased as [CO2] in the atmosphere increased and inputs of new C were not found in SOM. Consequently, the rates of soil respiration increased by 141% and 176% in the 800 and 1200 μL L?1 plantations, respectively, when compared with ambient [CO2] after 4 years of exposure. However, the increase in decomposition of old SOM (i.e. already present when CO2 treatments began) accounted for 72% and 69% of the increase in soil respiration seen under elevated [CO2]. This resulted in a net loss of soil C at a rate that was between 10 and 20 times faster at elevated [CO2] than at ambient conditions. The inability to retain new and old C in the soil may stem from the lack of stabilization of SOM, allowing for its rapid decomposition by soil heterotrophs.  相似文献   

7.
We grew a non-bicarbonate using red seaweed, Lomentaria articulata (Huds.) Lyngb., in media aerated with four O2 concentrations between 10 and 200% of current ambient [O2] and four CO2 concentrations between 67 and 500% of current ambient [CO2], in a factorial design, to determine the effects of gas composition on growth and physiology. The relative growth rate of L. articulata increased with increasing [CO2] up to 200% of current ambient [CO2] but was unaffected by [O2]. The relative growth enhancement, on a carbon basis, was 52% with a doubling of [CO2] but fell to 23% under 5× ambient [CO2]. Plants collected in winter responded more extremely to [CO2] than did plants collected in the summer, although the overall pattern was the same. Discrimination between stable carbon isotopes (Δ13C) increased with increasing [CO2] as would be expected for diffusive CO2 acquisition. Tissue C and N were inversely related to [CO2]. Growth in terms of biomass appeared to be limited by conversion of photosynthate to new biomass rather than simply by diffusion of CO2, suggesting that non-bicarbonate-using macroalgae, such as L. articulata, may not be directly analogous to C3 higher plants in terms of their responses to changing gas composition.  相似文献   

8.
The objective of this study was to test whether elevated [CO2], [O3] and nitrogen (N) fertility altered leaf mass per area (LMPA), non‐structural carbohydrate (TNC), N, lignin (LTGA) and proanthocyanidin (PA) concentrations in cotton (Gossypium hirsutum L.) leaves and roots. Cotton was grown in 14 dm3 pots with either sufficient (0·8 g N dm ? 3) or deficient (0·4 and 0·2 g N dm ? 3) N fertilization, and treated in open‐top chambers with either ambient or elevated ( + 175 and + 350 μ mol mol ? 1) [CO2] in combination with either charcoal‐filtered air (CF) or non‐filtered air plus 1·5 times ambient [O3]. At about 50 d after planting, LMPA, starch and PA concentrations in canopy leaves were as much as 51–72% higher in plants treated with elevated [CO2] compared with plants treated with ambient [CO2], whereas leaf N concentration was 29% lower in elevated [CO2]‐treated plants compared with controls. None of the treatments had a major effect on LTGA concentrations on a TNC‐free mass basis. LMPA and starch levels were up to 48% lower in plants treated with elevated [O3] and ambient [CO2] compared with CF controls, although the elevated [O3] effect was diminished when plants were treated concurrently with elevated [CO2]. On a total mass basis, leaf N and PA concentrations were higher in samples treated with elevated [O3] in ambient [CO2], but the difference was much reduced by elevated [CO2]. On a TNC‐free basis, however, elevated [O3] had little effect on tissue N and PA concentrations. Fertilization treatments resulted in higher PA and lower N concentrations in tissues from the deficient N fertility treatments. The experiment showed that suppression by elevated [O3] of LMPA and starch was largely prevented by elevated [CO2], and that interpretation of [CO2] and [O3] effects should include comparisons on a TNC‐free basis. Overall, the experiment indicated that allocation to starch and PA may be related to how environmental factors affect source–sink relationships in plants, although the effects of elevated [O3] on secondary metabolites differed in this respect.  相似文献   

9.
Baker  J. T.  Allen  L. H. 《Plant Ecology》1993,104(1):239-260
The continuing increase in atmospheric carbon dioxide concentration ([CO2]) and projections of possible future increases in global air temperatures have stimulated interest in the effects of these climate variables on plants and, in particular, on agriculturally important food crops. Mounting evidence from many different experiments suggests that the magnitude and even direction of crop responses to [CO2] and temperature is almost certain to be species dependent and very likely, within a species, to be cultivar dependent. Over the last decade, [CO2] and temperature experiments have been conducted on several crop species in the outdoor, naturally-sunlit, environmentally controlled, plant growth chambers by USDA-ARS and the University of Florida, at Gainesville, Florida, USA. The objectives for this paper are to summarize some of the major findings of these experiments and further to compare and contrast species responses to [CO2] and temperature for three diverse crop species: rice (Oryza sativa, L.), soybean (Glycine max, L.) and citrus (various species). Citrus had the lowest growth and photosynthetic rates but under [CO2] enrichment displayed the greatest percentage increases over ambient [CO2] control treatments. In all three species the direct effect of [CO2] enrichment was always an increase in photosynthetic rate. In soybean, photosynthetic rate depended on current [CO2] regardless of the long-term [CO2] history of the crop. In rice, photosynthetic rate measured at a common [CO2], decreased with increasing long-term [CO2] growth treatment due to a corresponding decline in RuBP carboxylase content and activity. Rice specific respiration decreased from subambient to ambient and superambient [CO2] due to a decrease in plant tissue nitrogen content and a decline in specific maintenance respiration rate. In all three species, crop water use decreased with [CO2] enrichment but increased with increases in temperature. For both rice and soybean, [CO2] enrichment increased growth and grain yield. Rice grain yields declined by roughly 10 % per each 1 °C rise in day/night temperature above 28/21 °C.  相似文献   

10.
Partitioning of 14C was assessed in sweet chestnut seedlings (Castanea sativa Mill.) grown in ambient and elevated atmospheric [CO2] environments during two vegetative cycles. The seedlings were exposed to 14CO2 atmosphere in both high and low [CO2] environments for a 6-day pulse period under controlled laboratory conditions. Six days after exposure to 14CO2, the plants were harvested, their dry mass and the radioactivity were evaluated. 14C concentration in plant tissues, root-soil system respiratory outputs and soil residues (rhizodeposition) were measured. Root production and rhizodeposition were increased in plants growing in elevated atmospheric [CO2]. When measuring total respiration, i.e. CO2 released from the root/soil system, it is difficult to separate CO2 originating from roots and that coming from the rhizospheric microflora. For this reason a model accounting for kinetics of exudate mineralization was used to estimate respiration of rhizospheric microflora and roots separately. Root activity (respiration and exudation) was increased at the higher atmospheric CO2 concentration. The proportion attributed to root respiration accounted for 70 to 90% of the total respiration. Microbial respiration was related to the amount of organic carbon available in the rhizosphere and showed a seasonal variation dependent upon the balance of root exudation and respiration. The increased carbon assimilated by plants grown under elevated atmospheric [CO2] stayed equally distributed between these increased root activities. ei]H Lambers  相似文献   

11.
The rates, products, and controls of the metabolism of fermentation intermediates in the sediments of a eutrophic lake were examined. 14C-fatty acids were directly injected into sediment subcores for turnover rate measurements. The highest rates of acetate turnover were in surface sediments (0- to 2-cm depth). Methane was the dominant product of acetate metabolism at all depths. Simultaneous measurements of acetate, propionate, and lactate turnover in surface sediments gave turnover rates of 159, 20, and 3 μM/h, respectively. [2-14C]propionate and [U-14C]lactate were metabolized to [14C]acetate, 14CO2, and 14CH4. [14C]formate was completely converted to 14CO2 in less than 1 min. Inhibition of methanogenesis with chloroform resulted in an immediate accumulation of volatile fatty acids and hydrogen. Hydrogen inhibited the metabolism of C3-C5 volatile fatty acids. The rates of fatty acid production were estimated from the rates of fatty acid accumulation in the presence of chloroform or hydrogen. The mean molar rates of production were acetate, 82%; propionate, 13%; butyrates, 2%; and valerates, 3%. A working model for carbon and electron flow is presented which illustrates that fermentation and methanogenesis are the predominate steps in carbon flow and that there is a close interaction between fermentative bacteria, acetogenic hydrogen-producing bacteria, and methanogens.  相似文献   

12.
The impact of doubled atmospheric [CO2] on the carbon balance of regularly cut Lolium perenne L. swards was studied for two years under semi-field conditions in the Wageningen Rhizolab. CO2 and H2O vapour exchange rates of the swards were measured continuously for two years in transparent enclosures. The light utilization efficiencies of the swards ranged between 1.5 g CO2 MJ–1 global radiation (high light, ambient [CO2]) and 2.8 g CO2 MJ–1 (low light, doubled [CO2]). The above-ground net primary productivity (NPP) in the enclosures was greater by 29% in 1994 and 43% in 1995 in the doubled [CO2] treatments, but only 20% and 25% more carbon was recovered in the periodical cuts. Thus, NPP increased significantly more than did the harvested above-ground biomass. The positive [CO2] effect on net carbon assimilation is therefore associated with a preferential allocation of extra carbon to the roots and soil. In addition to higher canopy photosynthesis and leaf elongation rates, a small part of the positive [CO2] effects on NPP could be attributed to a decrease of the specific respiration of the shoots. On a canopy basis however, respiration was equal or slightly higher at doubled [CO2] due to the higher amount of standing biomass. Comparison of NPP and carbon recovered in different harvests showed that allocation to roots and soil was highest in spring, it was low in early summer and increased again in late summer and autumn. The total gross amount of carbon partitioned to the roots and soil during the two year period was 57% more at doubled [CO2]. The total amount of carbon that was sequestered in the soil after subtraction of the respiratory losses was 458 g m–2 and 779 g m–2 in the ambient and doubled [CO2] treatments, respectively. The average water use efficiency (WUE) of the swards was increased by a factor 1.5 at doubled [CO2]. Both WUE and its positive interaction with [CO2] varied between years and were positively correlated with global irradiance. At doubled [CO2], the higher WUE was fully compensated for by a higher leaf area index. Therefore, total transpiration on a canopy basis was equal for the ambient and the doubled [CO2] concentrations in both years.  相似文献   

13.
Effects of daytime carbon dioxide concentration on dark respiration in rice   总被引:5,自引:1,他引:4  
Rising atmospheric carbon dioxide concentration ([CO2]) has generated considerable interest in the response of agricultural crops to [CO2]. The objectives of this study were to determine the effects of a wide range of daytime [CO2] on dark respiration of rice (Oryza sativa L. cv. IR-30). Rice plants were grown season-long in naturally sunlit plant growth chambers in subambient (160 and 250), ambient (330), or super-ambient (500, 660 and 900 μmol CO2 mol?1 air) [CO2] treatments. Canopy dark respiration, expressed on a ground area basis (Rd) increased with increasing [CO2] treatment from 160 to 500 μmol mol?1 treatments and was very similar among the superambient treatments. The trends in Rd over time and in response to increasing daytime [CO2] treatment were associated with and similar to trends previously described for photosynthesis. Specific respiration rate (Rdw) decreased with time during the growing season and was higher in the subambient than the ambient and superambient [CO2] treatments. This greater Rdw in the subambient [CO2] treatments was attributed to a higher specific maintenance respiration rate and was associated with higher plant tissue nitrogen concentration.  相似文献   

14.
温带落叶阔叶林冠层CO2浓度的时空变异   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究温带落叶阔叶林CO2浓度(摩尔分数, [CO2])的时空变化特征, 利用帽儿山通量塔8层[CO2]廓线系统分析了[CO2]的时间动态及垂直梯度, 并结合森林小气候的同步测定数据探讨了影响[CO2]时空变化的因子。结果表明: 帽儿山温带落叶阔叶林的[CO2]及其垂直梯度具有明显的日变化和季节变化。在日尺度上, [CO2]呈“单峰”曲线, 在夜间或日出前后出现最大值, 日出后迅速降低, 在午后达到最低值, 日落时分又开始迅速升高。在季节尺度上, 生长季的[CO2]日变幅明显大于非生长季, 且冬季(1、2和12月)白天呈“V”型, 其他季节白天呈“U”型, 这与白天对流边界层的持续时间随季节的变化趋势一致。在垂直方向上, [CO2]及其日变幅随高度增加而降低, 并且在生长季夜间湍流交换较弱时其垂直梯度最显著; 植被冠层的光合作用改变了生长旺季白天的[CO2]垂直格局, 使冠层高度的[CO2]最低; 休眠季节该垂直梯度大大减弱。近地层日均[CO2]与土壤温度的趋势相似, 呈单峰曲线; 而林冠上[CO2]在5月初和10月各出现一次峰值, 最低值出现在8月初, 与植被光合作用紧密相关。日尺度上[CO2]及其垂直梯度主要受控于大气边界层和生态系统碳代谢过程; 年尺度上近地层[CO2]主要受控于土壤呼吸, 而林冠上的[CO2]则受生态系统光合作用和呼吸作用的共同控制。  相似文献   

15.
Bergersen  F. J. 《Protoplasma》1999,206(1-3):137-142
Summary The previously published simulation of physiological functions occurring in infected cells of soybean nodules has been extended to include consideration of the diffusion of N2 from the outside of a nodule to the nitrogen-fixing bacteroids, in relation to published values for the apparentK m(N2) for nitrogen fixation in the soybean nodule system. Nitrogen fixation is driven by bacteroid respiration, so increases in the average relative oxygenation (Y) of cytoplasmic leghaemoglobin lead to increased bacteroid respiration, increased nitrogen fixation, and greater differences in concentration of dissolved N2 between the cell surface and the innermost bacteroids (d[N2]). Over the range ofY considered, values for d[N2] were from 5.2- to 6.2-fold greater than the corresponding values for d[O2], because of facilitation of O2 flux by cytoplasmic leghaemoglobin. Gradients of [N2] within symbiosomes are small relative to cytoplasmic values and at the symbiosome surface [N2] was greater than 0.4 mol/m3 at the greatest rates of nitrogen fixation calculated. Therefore, it is unlikely that values for [N2] anywhere in the infected cell are low enough to affect rates of nitrogen fixation significantly, unless low external atmospheric N2 pressures are used experimentally.Abbreviations Lb leghaemoglobin - LbO2 oxyleghaemoglobin - [O2], [N2 concentrations of free, dissolved oxygen and nitrogen - Y fractional oxygenation of leghaemoglobin  相似文献   

16.
Loiseau  P.  Soussana  J.F. 《Plant and Soil》1999,210(2):233-247
The effects of elevated [CO2] (700 μl l-1 CO2) and temperature increase (+3 °C) on carbon turnover in grassland soils were studied during 2.5 years at two N fertiliser supplies (160 and 530 kg N ha-1 y-1) in an experiment with well-established ryegrass swards (Lolium perenne) supplied with the same amounts of irrigation water. During the growing season, swards from the control climate (350 μl l-1 [CO2] at outdoor air temperature) were pulse labelled by the addition of 13CO2. The elevated [CO2] treatments were continuously labelled by the addition of fossil-fuel derived CO2 (13 C of -40 to -50 ‰). Prior to the start of the experimental treatments, the carbon accumulated in the plant parts and in the soil macro-organic matter (‘old’ C) was at −32‰. During the experiment, the carbon fixed in the plant material (‘new’ C) was at −14 and −54‰ in the ambient and elevated [CO2] treatments, respectively. During the experiment, the 13C isotopic mass balance method was used to calculate, for the top soil (0–15 cm), the carbon turnover in the stubble and roots and in the soil macro-organic matter above 200 μ (MOM). Elevated [CO2] stimulated the turnover of organic carbon in the roots and stubble and in the MOM at N+, but not at N−. At the high N supply, the mean replacement time of ‘old’ C by ‘new’ C declined in elevated, compared to ambient [CO2], from 18 to 7 months for the roots and stubble and from 25 to 17 months for the MOM. This resulted from increased rates of ‘new’ C accumulation and of ‘old’ C decay. By contrast, at the low N supply, despite an increase in the rate of accumulation of ‘new’ C, the soil C pools did not turnover faster in elevated [CO2], as the rate of ‘old’ C decomposition was reduced. A 3 °C temperature increase in elevated [CO2] decreased the input of fresh C to the roots and stubble and enhanced significantly the exponential rate for the ‘old’ C decomposition in the roots and stubble. An increased fertiliser N supply reduced the carbon turnover in the roots and stubble and in the MOM, in ambient but not in elevated [CO2]. The respective roles for carbon turnover in the coarse soil OM fractions, of the C:N ratio of the litter, of the inorganic N availability and of a possible priming effect between C-substrates are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Mungbean (Phaseolus aureus Roxb.) seedlings were grown hypobarically to assess the effects of low pressure (21-24 kilopascals) on growth and mitochondrial respiration. Control seedlings grown at ambient pressure (101 kilopascals) were provided amounts of O2 equivalent to those provided experimental seedlings at reduced pressure to factor out responses to O2 concentration and to total pressure. Respiration was assayed using washed mitochondria, and was found to respond only to O2 concentration. Regardless of total pressure, seedlings grown at 2 millimoles O2 per liter had higher state 3 respiration rates and decreased percentages of alternative respiration compared to ambient (8.4 millimoles O2 per liter) controls. In contrast, seedling growth responded to total pressure but not to O2 concentration. Seedlings were significantly larger when grown under low pressure. While low O2 (2 millimoles O2 per liter) diminished growth at ambient pressure, growth at low pressure in the same oxygen concentration was enhanced. Respiratory development and growth of mungbean seedlings under low pressure is unimpaired whether oxygen or air is used as the chamber gas, and further, low pressure can improve growth under conditions of poor aeration.  相似文献   

18.
Abstract Raising ambient levels of CO2 during the night, between 350 and 950cm3m?3, reduced the dark respiration rate of Medicago sativum seedlings. The percentage effect was greater for maintenance respiration than for dark respiration as a whole, and when the plants were in a low photosynthate status. Twenty-four h carbon balance studies confirmed a reduction in night time respiration and an increase of net carbon gain when night time [CO2] was high. Growth experiments showed a small but significant increase of dry weight in Medicago sativum seedlings exposed to high [CO2] (~ 1200 cm3m?3) at night. This effect was greater for plants grown with Rhizobium nodules than for plants grown with nitrate in the absence of Rhizobium. A similar, but smaller and statistically non-significant effect of high night time [CO2] on growth was found for Xanthium strumarium seedlings. The significance of these findings is discussed in relation to the rising CO2 content of the atmosphere.  相似文献   

19.
20.
Meiofauna (small-sized Metazoa and Foraminifera) may constitute a significant part of seafloor biomass and potentially play an important role in benthic metabolism. However, respiration measurements are limited and the methods used are diverse together complicating comparison or upscaling. Here we describe a novel glass micro-respiration chamber used to perform non-invasive measurements (built-in oxygen-sensitive fluorogenic membrane and stirrer) and together with direct organic carbon measurements report initial biomass-specific respiration rates of common intertidal meiofauna. Results indicate large differences between respiration rates of different taxa (biomass 0.7-5.2 µg C per individual) but very similar organic carbon biomass-specific respiration rates (1.6-2.5 µl O2 h− 1 mgC− 1 or on average 2.0 ± 0.3 µl O2 h− 1 mgC− 1). This new, rapid and accurate method allows the study of metabolic allometry of the different small-sized taxa and determining their functional role in benthic metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号