首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pluripotency confers Embryonic Stem Cells (ESCs) the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. Although the majority of ESCs divide without losing pluripotency, it has become evident that ESCs culture consists of multiple cell populations with different degrees of potency that are spontaneously induced in regular ESC culture conditions. Zscan4, a key pluripotency factor, marks ESC subpopulation that is referred to as high-level of pluripotency metastate. Here, we report that in ESC cultures treated with retinoic acid (RA), Zscan4 ESCs metastate is strongly enhanced. In particular, we found that induction of Zscan4 metastate is mediated via RA receptors (RAR-alpha, RAR-beta, and RAR-gamma), and it is dependent on phosphoinositide-3-kinase (PI3K) signaling. Remarkably, Zscan4 metastate induced by RA lacks canonical pluripotency genes Oct3/4 and Nanog but retained both self-renewal and pluripotency capabilities. Finally we demonstrated that the conditional ablation of Zscan4 subpopulation is dispensable for both endoderm and mesoderm but is required for ectoderm lineage. In conclusion, our research provides new insights about the role of RA signaling during ESCs high pluripotency metastate fluctuation.  相似文献   

2.
3.
4.
5.
6.
Utx is a candidate tumor suppressor gene that encodes histone H3 lysine 27 (H3K27) demethylase. In this study, we found that ectopic expression of Utx enhanced the expression of retinoblastoma tumor suppressor gene Rb and its related gene Rbl2. This activation was dependent on the demethylase activity of Utx, and was suggested to contribute to the decreased cell proliferation induced by Utx. A chromatin immunoprecipitation assay showed that over-expressed Utx was associated with the promoter regions of Rb and Rbl2 resulting in the removal of repressive H3K27 tri-methylation and the increase in active H3K4 tri-methylation. Furthermore, siRNA-mediated knockdown of Utx revealed the recruitment of endogenous Utx protein on the promoters of Rb and Rbl2 genes. These results indicate that Rb and Rbl2 are downstream target genes of Utx and may play important roles in Utx-mediated cell growth control.  相似文献   

7.
8.
The spermatogonial stem cell (SSC) compartment is maintained by self-renewal of stem cells as well as fragmentation of differentiating spermatogonia through abscission of intercellular bridges in a random and stochastic manner. The molecular mechanisms that regulate this reversible developmental lineage remain to be elucidated. Here, we show that histone H3K27 demethylase, JMJD3 (KDM6B), regulates the fragmentation of spermatogonial cysts. Down-regulation of Jmjd3 in SSCs promotes an increase in undifferentiated spermatogonia but does not affect their differentiation. Germ cell-specific Jmjd3 null male mice have larger testes and sire offspring for a longer period compared to controls, likely secondary to increased and prolonged maintenance of the spermatogonial compartment. Moreover, JMJD3 deficiency induces frequent fragmentation of spermatogonial cysts by abscission of intercellular bridges. These results suggest that JMJD3 controls the spermatogonial compartment through the regulation of fragmentation of spermatogonial cysts and this mechanism may be involved in maintenance of diverse stem cell niches.  相似文献   

9.
Classical activation (M1 phenotype) and alternative activation (M2 phenotype) are the two polars of microglial activation states that can produce either detrimental or beneficial effects in the central nervous system (CNS). Harnessing the beneficial properties of microglia cells by modulating their polarization states provides great potential for the treatment of Parkinson''s disease (PD). However, the epigenetic mechanism that regulates microglia polarization remains elusive. Here, we reported that histone H3K27me3 demethylase Jumonji domain containing 3 (Jmjd3) was essential for M2 microglia polarization. Suppression of Jmjd3 in N9 microglia inhibited M2 polarization and simultaneously exaggerated M1 microglial inflammatory responses, which led to extensive neuron death in vitro. We also observed that the suppression of Jmjd3 in the substantia nigra (SN) in vivo dramatically caused microglial overactivation and exacerbated dopamine (DA) neuron death in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-intoxicated mouse model of PD. Moreover, we showed that the Jmjd3 level was lower in the midbrain of aged mice, which was accompanied by an elevated level of H3K27me3 and an increased ratio of M1 to M2 markers, suggesting that aging is an important factor in switching the microglia phenotypes. Overall, our studies indicate that Jmjd3 is able to enhance the polarization of M2 microglia by modifying histone H3K27me3, and therefore it has a pivotal role in the switch of microglia phenotypes that may contribute to the immune pathogenesis of PD.  相似文献   

10.
11.
12.
13.
The histone demethylase Jmjd3 plays a critical role in cell lineage specification and differentiation at various stages of development. However, its function during normal myeloid development remains poorly understood. Here, we carried out a systematic in vivo screen of epigenetic factors for their function in hematopoiesis and identified Jmjd3 as a new epigenetic factor that regulates myelopoiesis in zebrafish. We demonstrated that jmjd3 was essential for zebrafish primitive and definitive myelopoiesis, knockdown of jmjd3 suppressed the myeloid commitment and enhanced the erythroid commitment. Only overexpression of spi1 but not the other myeloid regulators rescued the myeloid development in jmjd3 morphants. Furthermore, preliminary mechanistic studies demonstrated that Jmjd3 could directly bind to the spi1 regulatory region to alleviate the repressive H3K27me3 modification and activate spi1 expression. Thus, our studies highlight that Jmjd3 is indispensable for early zebrafish myeloid development by promoting spi1 expression.  相似文献   

14.
Covalent modifications of histone tails have fundamental roles in chromatin structure and function. Tri‐methyl modification on lysine 27 of histone H3 (H3K27me3) usually correlates with gene repression that plays important roles in cell lineage commitment and development. Mash1 is a basic helix‐loop‐helix regulatory protein that plays a critical role in neurogenesis, where it expresses as an early marker. In this study, we have shown a decreased H3K27me3 accompanying with an increased demethylase of H3K27me3 (Jmjd3) at the promoter of Mash1 can elicit a dramatically efficient expression of Mash1 in RA‐treated P19 cells. Over‐expression of Jmjd3 in P19 cells also significantly enhances the RA‐induced expression and promoter activity of Mash1. By contrast, the mRNA expression and promoter activity of Mash1 are significantly reduced, when Jmjd3 siRNA or dominant negative mutant of Jmjd3 is introduced into the P19 cells. Chromatin immunoprecipitation assays show that Jmjd3 is efficiently recruited to a proximal upstream region of Mash1 promoter that is overlapped with the specific binding site of Hes1 in RA‐induced cells. Moreover, the association between Jmjd3 and Hes1 is shown in a co‐Immunoprecipitation assay. It is thus likely that Jmjd3 is recruited to the Mash1 promoter via Hes1. Our results suggest that the demethylase activity of Jmjd3 and its mediator Hes1 for Mash1 promoter binding are both required for Jmjd3 enhanced efficient expression of Mash1 gene in the early stage of RA‐induced neuronal differentiation of P19 cells. J. Cell. Biochem. 110: 1457–1463, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
UTX (KDM6A) and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27) demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous XUtx− Y+ mutant male embryos should phenocopy homozygous XUtx− XUtx− females. However, XUtx− Y+ mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X+ YUty− mutant males are viable. In contrast, compound hemizygous XUtx− YUty− males phenocopy homozygous XUtx− XUtx− females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability.  相似文献   

16.
The Wnt signaling pathway is highly conserved across metazoa and has pleiotropic functions in the development of many animals. Binding of a secreted Wnt ligand to its Frizzled (Fz) receptor activates Dishevelled, which then drives one of three major signaling cascades, canonical (β-catenin), calcium, or planar cell polarity signaling. These pathways have distinct developmental effects and function in different processes in different organisms. Here we report the expression of six wnt and three fz genes during embryogenesis of the sea star, Patiria miniata, as a first step in uncovering the roles of Wnt signaling in the development of this organism. wnt3, wnt4, wnt8, and wnt16 are expressed in nested domains in the endoderm and lateral ectoderm from blastula through late gastrula stages; wnt2 and wnt5 are expressed in the mesoderm and anterior endoderm. Expression of different fz paralogs is detected in the mesoderm; posterior endoderm and ectoderm; and anterior ectoderm. Taken together, this suggests that Wnt signaling can occur throughout most of the embryo and may therefore play multiple roles during sea star development.  相似文献   

17.
The Wnt signaling pathway is highly conserved across metazoa and has pleiotropic functions in the development of many animals. Binding of a secreted Wnt ligand to its Frizzled (Fz) receptor activates Dishevelled, which then drives one of three major signaling cascades, canonical (β-catenin), calcium, or planar cell polarity signaling. These pathways have distinct developmental effects and function in different processes in different organisms. Here we report the expression of six wnt and three fz genes during embryogenesis of the sea star, Patiria miniata, as a first step in uncovering the roles of Wnt signaling in the development of this organism. wnt3, wnt4, wnt8, and wnt16 are expressed in nested domains in the endoderm and lateral ectoderm from blastula through late gastrula stages; wnt2 and wnt5 are expressed in the mesoderm and anterior endoderm. Expression of different fz paralogs is detected in the mesoderm; posterior endoderm and ectoderm; and anterior ectoderm. Taken together, this suggests that Wnt signaling can occur throughout most of the embryo and may therefore play multiple roles during sea star development.  相似文献   

18.
Jumonji C-terminal (JmjC) domain-containing proteins are protein hydroxylases and histone demethylases that control gene expression. Jumonji domain-containing protein 6 (Jmjd6) is indispensable for embryonic development and has both histone arginine demethylase and lysyl-hydroxylase activities. The protein undergoes post-translational homo-oligomerization, but the underlying mechanism remains unknown. In this study, we examined the enzymatic activity of Jmjd6 and uncovered the mechanism underlying its homo-oligomerization. An in vitro enzymatic assay monitored by matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry indicates that Jmjd6 is unable to remove the methyl group from histone arginine residues but can hydroxylate the histone H4 tail at lysine residues in a 2-oxoglutarate (2-OG)- and Fe (II)-dependent manner. A mutational analysis reveals that the homo-oligomerization of Jmjd6 requires its enzymatic activity and the N- and C-termini. Using an in vitro enzymatic assay, we further demonstrate that Jmjd6 can hydroxylate its N-terminus but not its C-terminus. In summary, we did not detect arginine demethylase activity for Jmjd6, but we did confirm that it could catalyze the lysyl-hydroxylation of histone peptides. In addition, we demonstrated that the homo-oligomerization of Jmjd6 requires its own enzymatic activity and the N- and C-termini. We propose that Jmjd6 forms intermolecular covalent bonds between its N- and C-termini via autohydroxylation.  相似文献   

19.
Hypoxia promotes stem cell maintenance and tumor progression, but it remains unclear how it regulates long-term adaptation toward these processes. We reveal a striking downregulation of the hypoxia-inducible histone H3 lysine 9 (H3K9) demethylase JMJD1A as a hallmark of clinical human germ cell-derived tumors, such as seminomas, yolk sac tumors, and embryonal carcinomas. Jmjd1a was not essential for stem cell self-renewal but played a crucial role as a tumor suppressor in opposition to the hypoxia-regulated oncogenic H3K9 methyltransferase G9a. Importantly, loss of Jmjd1a resulted in increased tumor growth, whereas loss of G9a produced smaller tumors. Pharmacological inhibition of G9a also resulted in attenuation of tumor growth, offering a novel therapeutic strategy for germ cell-derived tumors. Finally, Jmjd1a and G9a drive mutually opposing expression of the antiangiogenic factor genes Robo4, Igfbp4, Notch4, and Tfpi accompanied by changes in H3K9 methylation status. Thus, we demonstrate a novel mechanistic link whereby hypoxia-regulated epigenetic changes are instrumental for the control of tumor growth through coordinated dysregulation of antiangiogenic gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号