首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
回声定位蝙蝠及其声通讯   总被引:6,自引:2,他引:6  
综述了回声定位蝙蝠种类及其发声方式,回声定位信号的主要类型及回声定位信号声学特征,多普勒频移对长CF/FM蝙蝠的主要作用,简介了蝙蝠求偶和母婴识别等内声通讯行为,提出了一些尚待解决的重要问题。  相似文献   

2.
蝙蝠的回声定位声波普遍存在地理变化,然而尚不清楚幼蝠在扩散前能否辨别不同种群间的声波差异。本文采用"双选择声学回放实验",研究马铁菊头蝠(Rhinolophus ferrumequinum)幼蝠(1月龄)对回声定位声波地理变化的辨别能力及行为反应。采用4个行为参数衡量幼蝠对本种群(CC)与外种群(JN)回声定位声波的行为反应:每一回放室飞入的次数、飞行时间、停留次数、探测时间。Mann-Whitney U tests表明,马铁菊头蝠1月龄个体对回放声波的行为反应,除每一回放室停留的次数外,其他3个参数均存在显著差异(P0.05),且在本种群声波回放室(CC)的飞行次数和时间以及探测时间均高于外种群声波回放室(JN)。对4个行为参数进行主成分分析,Mann-Whitney U tests表明,回放本种群声波(CC)与外种群声波(JN)之间,第一主成分得分(PC1)存在显著差异(P0.01)。配对T检验表明,幼蝠对本种群声波反应更加强烈(PC1:t10=5.25,P0.001;PC2:t10=2.34,P0.05)。本研究说明马铁菊头蝠幼蝠能够辨别不同种群间回声定位声波的差异。  相似文献   

3.
科学家以蝙蝠为模式动物,从听觉、回声定位和生态适应与演化等方面开展了研究,取得了令人瞩目的成果。为适应回声定位,蝙蝠听觉系统的结构和功能产生了明显的特化。从外周到中枢形成了对声频率极为有序的表征,甚至在恒频-调频(constant frequency-frequency modulation,CF-FM)蝙蝠耳蜗形成了所谓的听觉凹,以及听皮质功能组构也模块化,成为了具有代表性的特化象征。神经元反应的潜伏期对蝙蝠不仅是基本特性,也是回声定位行为调控的一部分;研究发现,有较长潜伏期的神经元具有较尖锐的回声-延迟调谐特性,而较短潜伏期的神经元则有较宽的回声-延迟调谐特性。蝙蝠听神经元对频率调谐的精准度亦远胜于人类和其他非回声定位动物;而且,源于耳蜗听觉凹的传入在各级听中枢均显示出对回声定位信号第二谐波CF成分的过度表征,以满足对靶物回声多普勒频移探测的需要。时程是回声定位蝙蝠发声信号主动改变的参数之一,而时程调谐神经元则提供了一种编码声音时相特征的重要神经机制,匹配了对回声定位信号时相信息加工的需要。在多种回声定位蝙蝠的听中枢还发现,有回声-延迟调谐神经元,它们不仅能对靶物距离进行调谐,而且...  相似文献   

4.
DNA甲基化在动物组织发育和分化等生物过程中发挥至关重要的作用.本研究采用荧光标记甲基化敏感扩增多态性(fluorescence-labeled methylation sensitive amplified polymorphism,F-MSAP)技术分析了中华菊头蝠(Rhinolophus sinicus)脑、心、...  相似文献   

5.
Echolocating greater horseshoe bats (Rhinolophus ferrumequinum) emit their biosonar pulses nasally, through nostrils surrounded by fleshy appendages (‘noseleaves’) that diffract the outgoing ultrasonic waves. Movements of one noseleaf part, the lancet, were measured in live bats using two synchronized high speed video cameras with 3D stereo reconstruction, and synchronized with pulse emissions recorded by an ultrasonic microphone. During individual broadcasts, the lancet briefly flicks forward (flexion) and is then restored to its original position. This forward motion lasts tens of milliseconds and increases the curvature of the affected noseleaf surfaces. Approximately 90% of the maximum displacements occurred within the duration of individual pulses, with 70% occurring towards the end. Similar lancet motions were not observed between individual pulses in a sequence of broadcasts. Velocities of the lancet motion were too small to induce Doppler shifts of a biologically-meaningful magnitude, but the maximum displacements were significant in comparison with the overall size of the lancet and the ultrasonic wavelengths. Three finite element models were made from micro-CT scans of the noseleaf post mortem to investigate the acoustic effects of lancet displacement. The broadcast beam shapes were found to be altered substantially by the observed small lancet movements. These findings demonstrate that—in addition to the previously described motions of the anterior leaf and the pinna—horseshoe bat biosonar has a third degree of freedom for fast changes that can happen on the time scale of the emitted pulses or the returning echoes and could provide a dynamic mechanism for the encoding of sensory information.  相似文献   

6.
蝙蝠回声定位与捕食对策的研究   总被引:7,自引:3,他引:7  
蝙蝠的回声定位可以在相当程度上反映出其捕食对策以及栖息环境的特点,回声定位在强度、持续时间及频率等方面的变化模式显示出这类声学信号的多样性,而这种多样性与蝙蝠的捕食对策相关。这方面的研究在国际上历经几十年不衰,然而,在我国,蝙蝠回声定位的研究基本上是空白?..  相似文献   

7.
三种共栖蝙蝠的回声定位信号特征及其夏季食性的比较   总被引:1,自引:2,他引:1  
2005年6至9月,对桂林市郊区两个山洞中高颅鼠耳蝠(Myotissiligorensis)、菲菊头蝠(Rhinolo-phuspusillus)和黑髯墓蝠(Taphozousmelanopogon)的回声定位叫声特征和食性进行分析,并结合其形态特征与野外观察,推断其捕食生境和捕食策略。研究结果发现:黑髯墓蝠体型最大,声音特征属短调频型多谐波,一般为4个谐波,能量主要集中在第二谐波上,主频率为(32·84±1·17)kHz,选择鞘翅目和双翅目昆虫为主要食物;高颅鼠耳蝠(长调频型)和菲菊头蝠(长恒频-调频型),体型都较小,主频率分别是(84·44±8·13)kHz和(110·78±1·65)kHz,以双翅目昆虫为主要食物;而菲菊头蝠则以鞘翅目和双翅目昆虫为主要食物。上述结果证明,高颅鼠耳蝠、菲菊头蝠和黑髯墓蝠在声音和食物组成等方面出现了明显分化。  相似文献   

8.
在漫长的生物演化过程中,蝙蝠演化出了能飞行和高度适应生存环境的生物声纳系统和行为.蝙蝠属于哺乳动物纲的翼手目(Chiroptera),是唯一能真正飞行的哺乳动物,其种类超过1000种,位列哺乳类动物的第二大目.根据其体型大小和形态特征将其分成大蝙蝠亚目(Megachiroptera)和小蝙蝠亚目(Microchiroptera).对蝙蝠的研究具有重要的科学意义和实际应用价值,如在听感觉方面与人类共享听觉的某些基本原理,研究结果有助于认识人类听觉.它们发出的回声定位信号规整,便于模拟后用于研究听觉系统对声信号加工的机制,尤其是在听中枢对复杂声信号处理方面,认识其细胞和分子机制才刚开始,它们是极好的模型动物.另外,在仿生学方面也具有极其重要的价值,回声定位蝙蝠的生物声纳系统具有极高的时间和空间分辨率,是极具诱惑力的研究课题.有关恒频-调频蝙蝠听觉结构和功能的研究,已有相当的时日,获得了不少新的认识,窥探到敏锐的听觉与回声定位行为之间的某些适应性的机制,本文对这方面的研究进展做了简要介绍和评述.  相似文献   

9.
两种扁颅蝠回声定位叫声的比较   总被引:8,自引:1,他引:8  
对扁颅蝠 (Tylonycterispachypusa)和褐扁颅蝠 (T robustula)在飞行状态下的回声定位叫声进行了比较研究。结果表明 ,2种扁颅蝠的回声定位叫声的声谱图均呈调频 (FM)型 ,且波形相似 ;但叫声的最低频率、最高频率和主频率差异极显著 (P <0 0 1)。扁颅蝠的频率范围较高 ,为 6 2 4~ 91 6kHz ,主频率为 (76 5± 2 1)kHz ;褐扁颅蝠的频率范围较低 ,为 4 2 7~ 72 4kHz ,主频率为 (49 2± 1 8)kHz ;而 2种蝙蝠的声脉冲时程、声脉冲间隔和声脉冲重复率差异不显著 (P >0 0 5 )。回声定位叫声差异与其体型、所处的生境有关  相似文献   

10.
We used playback presentations to free-flying bats of 3 species to assess the influence of echolocation call design and foraging strategy on the role of echolocation calls in communication. Near feeding sites over water, Myotis lucifugus and M. yumanensis responded positively only to echolocation calls of conspecifics. Near roosts, these bats did not respond before young of the year became volant, and after this responded to presentations of echolocation calls of similar and dissimilar design. At feeding sites Lasiurus borealis responded only to echolocation calls of conspecifics and particularly to “feeding buzzes”. While Myotis, particularly subadults, appear to use the echolocation calls of conspecifics to locate feeding sites, L. borealis appears to use the calls of a foraging neighbour attacking prey to identify opportunities for ‘stealing’ food.  相似文献   

11.
The evolutionary sequence of events that led to flight and echolocation in bats is a compelling question in biology. Fundamentally lacking from this discussion is the ontogeny of how these two systems become functionally integrated producing an evolutionary developmental model. We build such a model by integrating growth and development of the cochlea, larynx, and sound production with the ontogeny of locomotion in newborn bats. In addition, we use available fossil and molecular data along with patterns of high frequency vocalization in extant mammals to model probable evolutionary transitions in bats. We find clear evidence that the ability to hear high frequency echolocation-like sounds preceded the ability to produce it and that a simple echolocation system was likely inherited from a shrew-like ancestor and was not an in situ evolutionary innovation of bats. Refinement of this system coevolved with sustained flight, both ontogenetically and evolutionarily, leading to the sophisticated echolocation observed today.  相似文献   

12.
回声定位声波地理差异及其形成原因是蝙蝠生态学研究领域一个基本而关键的问题,对于探索物种生存机制、物种形成及其保护具有重要科学意义。本研究从较大地理尺度上(9个地理种群)研究了菲菊头蝠(Rhinolophus pusillus)回声定位声波结构的地理差异,并进一步探讨了影响回声定位声波地理种群差异的因素。结果表明,菲菊头蝠雌性的体型较雄性略大,其主频较高。不同地理种群之间回声定位声波差异明显,包括脉冲持续时间、脉冲间隔、主频以及带宽在不同的地理种群之间均表现出一定程度的差异。进一步分析发现,不同地理种群之间的雌性菲菊头蝠前臂长和体重均与主频呈较弱的负相关,降雨量与雌性的主频呈较强的正相关;而不同地理种群之间的雄性前臂长、体重和降雨量与回声定位声波参数均无相关性;此外,地理距离、温度、湿度均与雌雄回声定位声波参数无相关性。本研究结果表明,菲菊头蝠不同地理种群间的回声定位声波出现明显差异,其中,体型和降雨量为主要影响因子,说明蝙蝠回声定位叫声的进化主要受到了当地生境的影响,表现出动物对不同生境的适应性进化。  相似文献   

13.
本研究以栖息于废弃防空洞的雄性菲菊头蝠(Rhinolophus pusillus)作为研究对象,探究其夏季集群大小变化及其潜在影响因素.应用红外热成像仪监测菲菊头蝠在6月到8月期间的集群大小.利用单因素方差分析和一般线性回归模型,检验菲菊头蝠集群大小的月变化及其与洞内微气候的关系.研究发现,菲菊头蝠集群大小从6月至8月...  相似文献   

14.
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.  相似文献   

15.
16.
同一山洞中五种蝙蝠的回声定位比较及生态位的分化   总被引:4,自引:1,他引:4  
对同一山洞中5种蝙蝠的回声定位叫声和外部形态作了比较分析,根据蝙蝠回声定位叫声,形态特征与捕食策略之间的联系,并结合部分的野外观察研究,推断其捕食生境及捕食策略,并对洞中5种共栖蝙蝠的生态位分化进行了分析;研究结果如下:(1)南蝠(Ia io)在地面或树冠中间的开阔空间捕食个体较大的昆虫;(2)大鼠耳蝠(Myotis myotis)主要以掠食性方式(gleaning) 捕食森林或草地地表面的昆虫;(3)黄大蹄幅(Hipposideros pratti)主要在树冠周围或树冠上方进行捕蝇器式(Fly-catching)(即倒挂于一固定枝条或地点,探索周围飞行或接近的昆虫,探索到后捕捉回原倒挂地点再进食)或飞行捕食,它主要捕食个体较大的甲虫;(4)角菊头蝠(Rhinolophus cornutus)主要在较密集树木中(枝叶间),农田及树木周围捕食型较小的翼拍动昆虫;(5)三叶蹄幅(Aselliscus wheeleri)是在树木,灌丛或在其周围空间内捕食较小的翼拍动昆虫,但其食性可能菊头蝠不同,根据以上研究结果,认为这5种蝙蝠的取食生态位存在着明显的分化。  相似文献   

17.
Body-worn fluency aids, aiming to relieve the disability of stammering during periods of use (just as spectales correct defective vision only while worn, and make no claim to treat or cure the disability) have been envisaged for a quarter of a century. Most have been based on Auditory Feedback Masking, but the Aid described here is probably the first body-worn version to be based on the principle of Delayed Auditory Feedback, recognised for 20 years as an aid to fluency, but hitherto available only in desk-top equipment. The embodiment described here fits easily into a breast pocket and is wired to a tie-pin microphone and two standard hearing aid earpieces. Voice actuated switching enables other speakers to be heard clearly and undelayed. Results of early clinical trials are indicated.  相似文献   

18.
Experimental manipulations of sensory feedback during complex behavior have provided valuable insights into the computations underlying motor control and sensorimotor plasticity1. Consistent sensory perturbations result in compensatory changes in motor output, reflecting changes in feedforward motor control that reduce the experienced feedback error. By quantifying how different sensory feedback errors affect human behavior, prior studies have explored how visual signals are used to recalibrate arm movements2,3 and auditory feedback is used to modify speech production4-7. The strength of this approach rests on the ability to mimic naturalistic errors in behavior, allowing the experimenter to observe how experienced errors in production are used to recalibrate motor output.Songbirds provide an excellent animal model for investigating the neural basis of sensorimotor control and plasticity8,9. The songbird brain provides a well-defined circuit in which the areas necessary for song learning are spatially separated from those required for song production, and neural recording and lesion studies have made significant advances in understanding how different brain areas contribute to vocal behavior9-12. However, the lack of a naturalistic error-correction paradigm - in which a known acoustic parameter is perturbed by the experimenter and then corrected by the songbird - has made it difficult to understand the computations underlying vocal learning or how different elements of the neural circuit contribute to the correction of vocal errors13.The technique described here gives the experimenter precise control over auditory feedback errors in singing birds, allowing the introduction of arbitrary sensory errors that can be used to drive vocal learning. Online sound-processing equipment is used to introduce a known perturbation to the acoustics of song, and a miniaturized headphones apparatus is used to replace a songbird''s natural auditory feedback with the perturbed signal in real time. We have used this paradigm to perturb the fundamental frequency (pitch) of auditory feedback in adult songbirds, providing the first demonstration that adult birds maintain vocal performance using error correction14. The present protocol can be used to implement a wide range of sensory feedback perturbations (including but not limited to pitch shifts) to investigate the computational and neurophysiological basis of vocal learning.  相似文献   

19.
Prey pursuit by an echolocating bat was studied theoretically and experimentally. First, a mathematical model was proposed to describe the flight dynamics of a bat and a single prey. In this model, the flight angle of the bat was affected by angles related to the flight path of the single moving prey, that is, the angle from the bat to the prey and the flight angle of the prey. Numerical simulation showed that the success rate of prey capture was high, when the bat mainly used the angle to the prey to minimize the distance to the prey, and also used the flight angle of the prey to minimize the difference in flight directions of itself and the prey. Second, parameters in the model were estimated according to experimental data obtained from video recordings taken while a Japanese horseshoe bat (Rhinolphus derrumequinum nippon) pursued a moving moth (Goniocraspidum pryeri) in a flight chamber. One of the estimated parameter values, which represents the ratio in the use of the angles, was consistent with the optimal value of the numerical simulation. This agreement between the numerical simulation and parameter estimation suggests that a bat chooses an effective flight path for successful prey capture by using the angles. Finally, the mathematical model was extended to include a bat and prey. Parameter estimation of the extended model based on laboratory experiments revealed the existence of bat’s dynamical attention towards prey, that is, simultaneous pursuit of prey and selective pursuit of respective prey. Thus, our mathematical model contributes not only to quantitative analysis of effective foraging, but also to qualitative evaluation of a bat’s dynamical flight strategy during multiple prey pursuit.  相似文献   

20.
Hibernation is an energy-saving strategy which is widely adopted by heterothermic mammals to survive in the harsh environment. The greater horseshoe bat (Rhinolophus ferrumequinum) can hibernate for a long period in the hibernation season. However, the global gene expression changes between hibernation and non-hibernation season in the greater horseshoe bat remain largely unknown. We herein reported a comprehensive survey of differential gene expression in the brain between winter hibernating and summer active greater horseshoe bats using next-generation sequencing technology. A total of 90,314,174 reads were generated and we identified 1,573 differentially expressed genes between active and torpid states. Interestingly, we found that differentially expressed genes are over-represented in some GO categories (such as metabolic suppression, cellular stress responses and oxidative stress), which suggests neuroprotective strategies might play an important role in hibernation control mechanisms. Our results determined to what extent the brain tissue of the greater horseshoe bats differ in gene expression between summer active and winter hibernating states and provided comprehensive insights into the adaptive mechanisms of bat hibernation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号