首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

The human intestinal microbiota is a crucial factor in the pathogenesis of various diseases, such as metabolic syndrome or inflammatory bowel disease (IBD). Yet, knowledge about the role of environmental factors such as smoking (which is known to influence theses aforementioned disease states) on the complex microbial composition is sparse. We aimed to investigate the role of smoking cessation on intestinal microbial composition in 10 healthy smoking subjects undergoing controlled smoking cessation.

Methods

During the observational period of 9 weeks repetitive stool samples were collected. Based on abundance of 16S rRNA genes bacterial composition was analysed and compared to 10 control subjects (5 continuing smokers and 5 non-smokers) by means of Terminal Restriction Fragment Length Polymorphism analysis and high-throughput sequencing.

Results

Profound shifts in the microbial composition after smoking cessation were observed with an increase of Firmicutes and Actinobacteria and a lower proportion of Bacteroidetes and Proteobacteria on the phylum level. In addition, after smoking cessation there was an increase in microbial diversity.

Conclusions

These results indicate that smoking is an environmental factor modulating the composition of human gut microbiota. The observed changes after smoking cessation revealed to be similar to the previously reported differences in obese compared to lean humans and mice respectively, suggesting a potential pathogenetic link between weight gain and smoking cessation. In addition they give rise to a potential association of smoking status and the course of IBD.  相似文献   

2.

Background

Probiotic bacteria can be used for the prevention and treatment of human inflammatory diseases including inflammatory bowel diseases (IBD). However, the nature of active components and exact mechanisms of this beneficial effects have not been fully elucidated. Our aim was to investigate if lysate of probiotic bacterium L. casei DN-114 001 (Lc) could decrease the severity of intestinal inflammation in a murine model of IBD.

Methodology/Principal Findings

The preventive effect of oral administration of Lc significantly reduces the severity of acute dextran sulfate sodium (DSS) colitis in BALB/c but not in SCID mice. In order to analyze how this beneficial effect interferes with well-known phases of intestinal inflammation pathogenesis in vivo and in vitro, we evaluated intestinal permeability using the FITC-labeled dextran method and analysed tight junction proteins expression by immunofluorescence and PCR. We also measured CD4+FoxP3+ regulatory T cells proportion by FACS analysis, microbiota composition by pyrosequencing, and local cytokine production by ELISA. Lc leads to a significant protection against increased intestinal permeability and barrier dysfunction shown by preserved ZO-1 expression. We found that the Lc treatment increases the numbers of CD4+FoxP3+ regulatory T cells in mesenteric lymph nodes (MLN), decreases production of pro-inflammatory cytokines TNF-α and IFN-γ, and anti-inflammatory IL-10 in Peyer''s patches and large intestine, and changes the gut microbiota composition. Moreover, Lc treatment prevents lipopolysaccharide-induced TNF-α expression in RAW 264.7 cell line by down-regulating the NF-κB signaling pathway.

Conclusion/Significance

Our study provided evidence that even non-living probiotic bacteria can prevent the development of severe forms of intestinal inflammation by strengthening the integrity of intestinal barrier and modulation of gut microenvironment.  相似文献   

3.

Introduction

Children presenting for the first time with inflammatory bowel disease (IBD) offer a unique opportunity to study aetiological agents before the confounders of treatment. Microaerophilic bacteria can exploit the ecological niche of the intestinal epithelium; Helicobacter and Campylobacter are previously implicated in IBD pathogenesis. We set out to study these and other microaerophilic bacteria in de-novo paediatric IBD.

Patients and Methods

100 children undergoing colonoscopy were recruited including 44 treatment naïve de-novo IBD patients and 42 with normal colons. Colonic biopsies were subjected to microaerophilic culture with Gram-negative isolates then identified by sequencing. Biopsies were also PCR screened for the specific microaerophilic bacterial groups: Helicobacteraceae, Campylobacteraceae and Sutterella wadsworthensis.

Results

129 Gram-negative microaerophilic bacterial isolates were identified from 10 genera. The most frequently cultured was S. wadsworthensis (32 distinct isolates). Unusual Campylobacter were isolated from 8 subjects (including 3 C. concisus, 1 C. curvus, 1 C. lari, 1 C. rectus, 3 C. showae). No Helicobacter were cultured. When comparing IBD vs. normal colon control by PCR the prevalence figures were not significantly different (Helicobacter 11% vs. 12%, p = 1.00; Campylobacter 75% vs. 76%, p = 1.00; S. wadsworthensis 82% vs. 71%, p = 0.312).

Conclusions

This study offers a comprehensive overview of the microaerophilic microbiota of the paediatric colon including at IBD onset. Campylobacter appear to be surprisingly common, are not more strongly associated with IBD and can be isolated from around 8% of paediatric colonic biopsies. S. wadsworthensis appears to be a common commensal. Helicobacter species are relatively rare in the paediatric colon.

Trial Registration

This study is publically registered on the United Kingdom Clinical Research Network Portfolio (9633).  相似文献   

4.
Li Q  Zhang Q  Wang C  Tang C  Zhang Y  Li N  Li J 《PloS one》2011,6(6):e20460

Background

The intestinal chronic rejection (CR) is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity.

Methods/Principal Findings

The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions.

Conclusions/Significance

Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.  相似文献   

5.

Background/Aim

The human intestinal microbiota plays an important role in modulation of mucosal immune responses. To study interactions between intestinal epithelial cells (IECs) and commensal bacteria, a functional metagenomic approach was developed. One interest of metagenomics is to provide access to genomes of uncultured microbes. We aimed at identifying bacterial genes involved in regulation of NF-κB signaling in IECs. A high throughput cell-based screening assay allowing rapid detection of NF-κB modulation in IECs was established using the reporter-gene strategy to screen metagenomic libraries issued from the human intestinal microbiota.

Methods

A plasmid containing the secreted alkaline phosphatase (SEAP) gene under the control of NF-κB binding elements was stably transfected in HT-29 cells. The reporter clone HT-29/kb-seap-25 was selected and characterized. Then, a first screening of a metagenomic library from Crohn''s disease patients was performed to identify NF-κB modulating clones. Furthermore, genes potentially involved in the effect of one stimulatory metagenomic clone were determined by sequence analysis associated to mutagenesis by transposition.

Results

The two proinflammatory cytokines, TNF-α and IL-1β, were able to activate the reporter system, translating the activation of the NF-κB signaling pathway and NF-κB inhibitors, BAY 11-7082, caffeic acid phenethyl ester and MG132 were efficient. A screening of 2640 metagenomic clones led to the identification of 171 modulating clones. Among them, one stimulatory metagenomic clone, 52B7, was further characterized. Sequence analysis revealed that its metagenomic DNA insert might belong to a new Bacteroides strain and we identified 2 loci encoding an ABC transport system and a putative lipoprotein potentially involved in 52B7 effect on NF-κB.

Conclusions

We have established a robust high throughput screening assay for metagenomic libraries derived from the human intestinal microbiota to study bacteria-driven NF-κB regulation. This opens a strategic path toward the identification of bacterial strains and molecular patterns presenting a potential therapeutic interest.  相似文献   

6.

Background

Inflammatory bowel diseases (IBDs) appear to be modulated by the interaction of pathogen-associated molecular patterns (PAMPs) derived from intestinal bacteria with their respective innate immune receptors, including Toll-like receptors (TLRs). We aimed to establish if intestinal concentrations of proinflammatory bacterial ligands of TLR2, TLR4, or TLR5 may be altered in murine IBD models, and to characterize which of the major bacterial groups may contribute to each signal.

Methodology/Principal Findings

PAMPs specific for TLR2 (lipopeptide equivalents), TLR4 (lipopolysaccharide equivalents), and TLR5 (flagellin equivalents) in human and murine fecal and intestinal samples were quantified using HEK-293 cells transfected with respective TLRs and calibrated with defined standard PAMPs. The induction of colitis in mice by dextran-sodium-sulphate treatment significantly increased colonic lipopeptide (fourfold) and LPS equivalent (550-fold) concentrations, while flagellin equivalent concentrations remained similar. The induction of ileitis by oral infection with Toxoplasma gondii dramatically increased ileal concentrations of lipopeptide (370-fold), LPS (3,300-fold), and flagellin equivalents (38-fold), all P<0.01. Analysis of representative strains of the major bacterial groups of the human intestine revealed that enterobacterial species are likely to be more significant contributors of soluble TLR2 and TLR4 stimulants to the intestinal milieu than Bacteroides species or Gram-positive Firmicutes.

Conclusions/Significance

We conclude that the induction of colitis or ileitis in mice is associated with significant disease-specific alterations to the PAMP profile of the gut microbiota.  相似文献   

7.

Background

While there are a variety of identifiable causes of constipation, even idiopathic constipation has different possible mechanisms. Sennosides, the main laxative constituents of Daio, an ancient Kampo medicine, are prodrugs that are converted to an active principle, rheinanthrone, by intestinal microbiota. In this study, we aimed to determine the sennoside hydrolysis ability of lactic acid bacterial strains and bifidobacteria in the intestine and to investigate their effect on intestinal peristalsis in mice.

Methodology/Principal Findings

A total of 88 lactic acid bacterial strains and 47 bifidobacterial strains were evaluated for their ability to hydrolyze sennosides. Our results revealed that 4 strains, all belonging to the genus Bifidobacterium, had strong sennoside hydrolysis ability, exhibiting a decrease of >70% of sennoside content. By thin-layer chromatography analysis, rheinanthrone was detected in the medium cultured with B. pseudocatenulatum LKM10070 and B. animalis subsp. lactis LKM512. The fecal sennoside contents significantly (P<0.001) decreased upon oral administration of these strains as compared with the control. Intestinal peristalsis activity was measured by the moved distance of the charcoal powder administered orally. The distance travelled by the charcoal powder in LKM512-treated mice was significantly longer than that of control (P<0.05). Intestinal microbiota were analysed by real-time PCR and terminal-restriction fragment length polymorphism. The diversity of the intestinal microbiota was reduced by kanamycin treatment and the diversity was not recovered by LKM512 treatment.

Conclusion/Significance

We demonstrated that intestinal peristalsis was promoted by rheinanthrone produced by hydrolysis of sennoside by strain LKM512 and LKM10070.  相似文献   

8.

Background and Aims

Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice.

Methodology/Principal Findings

HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-γ in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota.

Conclusion

Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-γ production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.  相似文献   

9.

Background

Recent molecular studies have revealed a highly complex bacterial assembly in the canine intestinal tract. There is mounting evidence that microbes play an important role in the pathogenesis of acute and chronic enteropathies of dogs, including idiopathic inflammatory bowel disease (IBD). The aim of this study was to characterize the bacterial microbiota in dogs with various gastrointestinal disorders.

Methodology/Principal Findings

Fecal samples from healthy dogs (n = 32), dogs with acute non-hemorrhagic diarrhea (NHD; n = 12), dogs with acute hemorrhagic diarrhea (AHD; n = 13), and dogs with active (n = 9) and therapeutically controlled idiopathic IBD (n = 10) were analyzed by 454-pyrosequencing of the 16S rRNA gene and qPCR assays. Dogs with acute diarrhea, especially those with AHD, had the most profound alterations in their microbiome, as significant separations were observed on PCoA plots of unweighted Unifrac distances. Dogs with AHD had significant decreases in Blautia, Ruminococcaceae including Faecalibacterium, and Turicibacter spp., and significant increases in genus Sutterella and Clostridium perfringens when compared to healthy dogs. No significant separation on PCoA plots was observed for the dogs with IBD. Faecalibacterium spp. and Fusobacteria were, however, decreased in the dogs with clinically active IBD, but increased during time periods of clinically insignificant IBD, as defined by a clinical IBD activity index (CIBDAI).

Conclusions

Results of this study revealed a bacterial dysbiosis in fecal samples of dogs with various GI disorders. The observed changes in the microbiome differed between acute and chronic disease states. The bacterial groups that were commonly decreased during diarrhea are considered to be important short-chain fatty acid producers and may be important for canine intestinal health. Future studies should correlate these observed phylogenetic differences with functional changes in the intestinal microbiome of dogs with defined disease phenotypes.  相似文献   

10.

Background & Aims

Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease.

Methods

We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure.

Results

Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases.

Conclusions

Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used.  相似文献   

11.
12.

Background

Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear.

Aims

To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice.

Methods

We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay.

Results

OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml.

Conclusions

OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity.  相似文献   

13.

Introduction

Crohn''s disease (CD) and ulcerative colitis (UC) are the two major forms of inflammatory bowel disease (IBD). A high prevalence of Campylobacter concisus was previously detected in paediatric CD and adult UC. Currently, the prevalence of C. concisus in adult CD and the preferential colonization sites of Campylobacter species in the human intestine are unknown. In this study, we examined the prevalence of Campylobacter species in biopsies collected from multiple anatomic sites of adult patients with IBD and controls.

Methods

Three hundred and one biopsies collected from ileum, caecum, descending colon and rectum of 28 patients IBD (15 CD and 13 UC) and 33 controls were studied. Biopsies were used for DNA extraction and detection of Campylobacter species by PCR-sequencing and Campylobacter cultivation.

Results

A significantly higher prevalence of C. concisus in colonic biopsies of patients with CD (53%) was detected as compared with the controls (18%). Campylobacter genus-PCR positivity and C. concisus positivity in patients with UC were 85% and 77% respectively, being significantly higher than that in the controls (48% and 36%). C. concisus was more often detected in descending colonic and rectal biopsies from patients with IBD in comparison to the controls. C. concisus was isolated from patients with IBD.

Conclusion

The high intestinal prevalence of C. concisus in patients with IBD, particularly in the proximal large intestine, suggests that future studies are needed to investigate the possible involvement of C. concisus in a subgroup of human IBD. To our knowledge, this is the first report of the association between adult CD and C. concisus as well as the first study of the preferential colonization sites of C. concisus in the human intestine.  相似文献   

14.

Background

Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity.

Methodology/Principal Findings

Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals'' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer''s patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium.

Conclusion

We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice.  相似文献   

15.

Background and Aims

Celiac disease (CD) is a chronic inflammatory disorder of the small intestine that is induced by dietary wheat gluten proteins (gliadins) in genetically predisposed individuals. The overgrowth of potentially pathogenic bacteria and infections has been suggested to contribute to CD pathogenesis. We aimed to study the effects of gliadin and various intestinal bacterial strains on mucosal barrier integrity, gliadin translocation, and cytokine production.

Methodology/Principal Findings

Changes in gut mucosa were assessed in the intestinal loops of inbred Wistar-AVN rats that were reared under germ-free conditions in the presence of various intestinal bacteria (enterobacteria and bifidobacteria isolated from CD patients and healthy children, respectively) and CD-triggering agents (gliadin and IFN-γ) by histology, scanning electron microscopy, immunofluorescence, and a rat cytokine antibody array. Adhesion of the bacterial strains to the IEC-6 rat cell line was evaluated in vitro.Gliadin fragments alone or together with the proinflammatory cytokine interferon (IFN)-γ significantly decreased the number of goblet cells in the small intestine; this effect was more pronounced in the presence of Escherichia coli CBL2 and Shigella CBD8. Shigella CBD8 and IFN-γ induced the highest mucin secretion and greatest impairment in tight junctions and, consequently, translocation of gliadin fragments into the lamina propria. Shigella CBD8 and E. coli CBL2 strongly adhered to IEC-6 epithelial cells. The number of goblet cells in small intestine increased by the simultaneous incubation of Bifidobacterium bifidum IATA-ES2 with gliadin, IFN-γ and enterobacteria. B. bifidum IATA-ES2 also enhanced the production of chemotactic factors and inhibitors of metalloproteinases, which can contribute to gut mucosal protection.

Conclusions

Our results suggest that the composition of the intestinal microbiota affects the permeability of the intestinal mucosa and, consequently, could be involved in the early stages of CD pathogenesis.  相似文献   

16.

Background

Murine models are a crucial component of gut microbiome research. Unfortunately, a multitude of genetic backgrounds and experimental setups, together with inter-individual variation, complicates cross-study comparisons and a global understanding of the mouse microbiota landscape. Here, we investigate the variability of the healthy mouse microbiota of five common lab mouse strains using 16S rDNA pyrosequencing.

Results

We find initial evidence for richness-driven, strain-independent murine enterotypes that show a striking resemblance to those in human, and which associate with calprotectin levels, a marker for intestinal inflammation. After enterotype stratification, we find that genetic, caging and inter-individual variation contribute on average 19%, 31.7% and 45.5%, respectively, to the variance in the murine gut microbiota composition. Genetic distance correlates positively to microbiota distance, so that genetically similar strains have more similar microbiota than genetically distant ones. Specific mouse strains are enriched for specific operational taxonomic units and taxonomic groups, while the ''cage effect'' can occur across mouse strain boundaries and is mainly driven by Helicobacter infections.

Conclusions

The detection of enterotypes suggests a common ecological cause, possibly low-grade inflammation that might drive differences among gut microbiota composition in mammals. Furthermore, the observed environmental and genetic effects have important consequences for experimental design in mouse microbiome research.  相似文献   

17.

Background

The intestinal microbiota is increasingly linked to the pathogenesis of chronic enteropathies (CE) in dogs. While imbalances in duodenal and fecal microbial communities have been associated with mucosal inflammation, relatively little is known about alterations in mucosal bacteria seen with CE involving the ileum and colon.

Aim

To investigate the composition and spatial organization of mucosal microbiota in dogs with CE and controls.

Methods

Tissue sections from endoscopic biopsies of the ileum and colon from 19 dogs with inflammatory bowel disease (IBD), 6 dogs with granulomatous colitis (GC), 12 dogs with intestinal neoplasia, and 15 controls were studied by fluorescence in situ hybridization (FISH) on a quantifiable basis.

Results

The ileal and colonic mucosa of healthy dogs and dogs with CE is predominantly colonized by bacteria localized to free and adherent mucus compartments. CE dogs harbored more (P < 0.05) mucosal bacteria belonging to the Clostridium-coccoides/Eubacterium rectale group, Bacteroides, Enterobacteriaceae, and Escherichia coli versus controls. Within the CE group, IBD dogs had increased (P < 0.05) Enterobacteriaceae and E. coli bacteria attached onto surface epithelia or invading within the intestinal mucosa. Bacterial invasion with E. coli was observed in the ileal and colonic mucosa of dogs with GC (P < 0.05). Dogs with intestinal neoplasia had increased (P < 0.05) adherent (total bacteria, Enterobacteriaceae, E. coli) and invasive (Enterobacteriaceae, E. coli, and Bacteroides) bacteria in biopsy specimens. Increased numbers of total bacteria adherent to the colonic mucosa were associated with clinical disease severity in IBD dogs (P < 0.05).

Conclusion

Pathogenic events in canine CE are associated with different populations of the ileal and colonic mucosal microbiota.  相似文献   

18.

Background

Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears.

Methodology/Principal Findings

Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids.

Conclusion

This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.  相似文献   

19.

Background

The soil-transmitted helminth (STH), Trichuris trichiura colonises the human large intestine where it may modify inflammatory responses, an effect possibly mediated through alterations in the intestinal microbiota. We hypothesised that patent T. trichiura infections would be associated with altered faecal microbiota and that anthelmintic treatment would induce a microbiota resembling more closely that observed in uninfected individuals.

Materials and Methods

School children in Ecuador were screened for STH infections and allocated to 3 groups: uninfected, T. trichiura only, and mixed infections with T. trichiura and Ascaris lumbricoides. A sample of uninfected children and those with T. trichiura infections only were given anthelmintic treatment. Bacterial community profiles in faecal samples were studied by 454 pyrosequencing of 16 S rRNA genes.

Results

Microbiota analyses of faeces were done for 97 children: 30 were uninfected, 17 were infected with T. trichiura, and 50 with T. trichiura and A. lumbricoides. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Treatment resulted in 100% cure of STH infections. Comparisons of the microbiota at different taxonomic levels showed no statistically significant differences in composition between uninfected children and those with T. trichiura infections. We observed a decreased proportional abundance of a few bacterial genera from the Clostridia class of Firmicutes and a reduced bacterial diversity among children with mixed infections compared to the other two groups, indicating a possible specific effect of A. lumbricoides infection. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition.

Discussion

Our data indicate that patent human infections with T. trichiura may have no effect on faecal microbiota but that A. lumbricoides colonisation might be associated with a disturbed microbiota. Our results also catalogue the microbiota of rural Ecuadorians and indicate differences with individuals from more urban industrialised societies.  相似文献   

20.

Background

Inflammatory bowel disease (IBD) is associated with a defective intestinal barrier and enhanced adaptive immune responses against commensal microbiota. Immune responses against food antigens in IBD patients remain poorly defined.

Methods

IgG and IgA specific for food and microfloral antigens (wheat and milk extracts; purified ovalbumin; Escherichia coli and Bacteroides fragilis lysates; mannan from Saccharomyces cerevisiae) were analyzed by ELISA in the serum and feces of patients with Crohn''s disease (CD; n = 52 for serum and n = 20 for feces), ulcerative colitis (UC; n = 29; n = 17), acute gastroenteritis/colitis (AGE; n = 12; n = 9) as well as non-inflammatory controls (n = 61; n = 39).

Results

Serum anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-B. fragilis IgG and IgA levels were increased in CD patients whereas antibody (Ab) levels against E. coli and food antigens were not significantly different within the patient groups and controls. Subgroup analysis revealed that CD patients with severe diseases defined by stricturing and penetrating lesions have slightly higher anti-food and anti-microbial IgA levels whereas CD and UC patients with arthropathy have decreased anti-food IgG levels. Treatment with anti-TNF-α Abs in CD patients was associated with significantly decreased ASCA IgG and IgA and anti-E. coli IgG. In the feces specific IgG levels against all antigens were higher in CD and AGE patients while specific IgA levels were higher in non-IBD patients. Anti-food IgG and IgA levels did not correlate with food intolerance.

Summary

In contrast to anti-microbial Abs, we found only minor changes in serum anti-food Ab levels in specific subgroups of IBD patients. Fecal Ab levels towards microbial and food antigens show distinct patterns in controls, CD and UC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号