首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Dcp1:Dcp2 decapping complex catalyses the removal of the mRNA 5' cap structure. Activator proteins, including Edc3 (enhancer of decapping 3), modulate its activity. Here, we solved the structure of the yeast Edc3 LSm domain in complex with a short helical leucine-rich motif (HLM) from Dcp2. The motif interacts with the monomeric Edc3 LSm domain in an unprecedented manner and recognizes a noncanonical binding surface. Based on the structure, we identified additional HLMs in the disordered C-terminal extension of Dcp2 that can interact with Edc3. Moreover, the LSm domain of the Edc3-related protein Scd6 competes with Edc3 for the interaction with these HLMs. We show that both Edc3 and Scd6 stimulate decapping in vitro, presumably by preventing the Dcp1:Dcp2 complex from adopting an inactive conformation. In addition, we show that the C-terminal HLMs in Dcp2 are necessary for the localization of the Dcp1:Dcp2 decapping complex to P-bodies in vivo. Unexpectedly, in contrast to yeast, in metazoans the HLM is found in Dcp1, suggesting that details underlying the regulation of mRNA decapping changed throughout evolution.  相似文献   

2.
3.
4.
Dunckley T  Tucker M  Parker R 《Genetics》2001,157(1):27-37
The major mRNA decay pathway in Saccharomyces cerevisiae occurs through deadenylation, decapping, and 5' to 3' degradation of the mRNA. Decapping is a critical control point in this decay pathway. Two proteins, Dcp1p and Dcp2p, are required for mRNA decapping in vivo and for the production of active decapping enzyme. To understand the relationship between Dcp1p and Dcp2p, a combination of both genetic and biochemical approaches were used. First, we demonstrated that when Dcp1p is biochemically separated from Dcp2p, Dcp1p was active for decapping. This observation confirmed that Dcp1p is the decapping enzyme and indicated that Dcp2p functions to allow the production of active Dcp1p. We also identified two related proteins that stimulate decapping, Edc1p and Edc2p (Enhancer of mRNA DeCapping). Overexpression of the EDC1 and EDC2 genes suppressed conditional alleles of dcp1 and dcp2, respectively. Moreover, when mRNA decapping was compromised, deletion of the EDC1 and/or EDC2 genes caused significant mRNA decay defects. The Edc1p also co-immunoprecipitated with Dcp1p and Dcp2p. These results indicated that Edc1p and Edc2p interact with the decapping proteins and function to enhance the decapping rate.  相似文献   

5.
P bodies are cytoplasmic RNA granules containing the Dcp1-Dcp2 decapping enzymes where mRNA decay can occur. Here, we describe the characterization of P bodies in the fission yeast Schizosaccharomyces pombe. Most information on the property and function of P bodies stems from studies in the distantly related budding yeast Saccharomyces cerevisiae, and Edc3 was identified as a scaffold protein required for P-body assembly. However, we found that, unlike in S. cerevisiae, fission yeast Edc3 was dispensable for P-body formation. Pdc1, a novel partner of the fission yeast decapping enzyme, with a limited similarity to plant Edc4/Varicose that is required for the assembly of P bodies, was identified (tandem affinity purification–matrix-assisted laser desorption ionization tandem mass spectrometry [TAP-MALDI MS/MS]). Pdc1 interacts with Dcp2 through its C terminus and contains a coiled-coil region for self-interaction to mediate P-body formation. In line with the model that Pdc1 cross-bridges different proteins, additional interactions can be demonstrated with components such as Edc3 and Ste13. Although Pdc1 is not required for the interaction between Dcp1 and Dcp2, our data suggest that Pdc1 acts as a functional homologue of Edc4, a third component of the decapping enzymes that is thought to be absent from fungi. Together, these results highlight the diverse P-body protein compositions between different species and might help to provide insight into their evolutionary paths.  相似文献   

6.
Cap hydrolysis is a critical step in several eukaryotic mRNA decay pathways and is carried out by the evolutionarily conserved decapping complex containing Dcp2 at the catalytic core. In yeast, Dcp1 is an essential activator of decapping and coactivators such as Edc1 and Edc2 are thought to enhance activity, though their mechanism remains elusive. Using kinetic analysis we show that a crucial function of Dcp1 is to couple the binding of coactivators of decapping to activation of Dcp2. Edc1 and Edc2 bind Dcp1 via its EVH1 proline recognition site and stimulate decapping by 1000-fold, affecting both the K(M) for mRNA and rate of the catalytic step. The C-terminus of Edc1 is necessary and sufficient to enhance the catalytic step, while the remainder of the protein likely increases mRNA binding to the decapping complex. Lesions in the Dcp1 EVH1 domain or the Edc1 proline-rich sequence are sufficient to block stimulation. These results identify a new role of Dcp1, which is to link the binding of coactivators to substrate recognition and activation of Dcp2.  相似文献   

7.
Kshirsagar M  Parker R 《Genetics》2004,166(2):729-739
The major pathway of mRNA decay in yeast initiates with deadenylation, followed by mRNA decapping and 5'-3' exonuclease digestion. An in silico approach was used to identify new proteins involved in the mRNA decay pathway. One such protein, Edc3p, was identified as a conserved protein of unknown function having extensive two-hybrid interactions with several proteins involved in mRNA decapping and 5'-3' degradation including Dcp1p, Dcp2p, Dhh1p, Lsm1p, and the 5'-3' exonuclease, Xrn1p. We show that Edc3p can stimulate mRNA decapping of both unstable and stable mRNAs in yeast when the decapping enzyme is compromised by temperature-sensitive alleles of either the DCP1 or the DCP2 genes. In these cases, deletion of EDC3 caused a synergistic mRNA-decapping defect at the permissive temperatures. The edc3Delta had no effect when combined with the lsm1Delta, dhh1Delta, or pat1Delta mutations, which appear to affect an early step in the decapping pathway. This suggests that Edc3p specifically affects the function of the decapping enzyme per se. Consistent with a functional role in decapping, GFP-tagged Edc3p localizes to cytoplasmic foci involved in mRNA decapping referred to as P-bodies. These results identify Edc3p as a new protein involved in the decapping reaction.  相似文献   

8.
Analysis of recombinant yeast decapping enzyme   总被引:11,自引:2,他引:9       下载免费PDF全文
A critical step in the turnover of yeast mRNAs is decapping. Two yeast proteins, Dcp1p and Dcp2p, are absolutely required for decapping, although their precise roles in the decapping reaction have not been established. To determine the function of both Dcp1p and Dcp2p in decapping, we purified recombinant versions of these proteins from Escherichia coli and examined their properties. These experiments demonstrate that copurification of Dcp1p and Dcp2p yields active decapping enzyme under a variety of conditions. Moreover, Dcp2p alone can have decapping activity under some biochemical conditions. This suggests that Dcp2p can be a catalytic subunit of the decapping complex, and Dcp1p may function to enhance Dcp2p activity, or as an additional active subunit. In addition, recombinant Dcp1p/Dcp2p prefers long mRNA substrates and is sensitive to inhibition by sequestration of the 5' end but not the 3' end of the substrate. This suggests that Dcp1p/Dcp2p contains an additional RNA-binding site spatially distinct from the active site. Finally, using two RNA-binding proteins that enhance decapping in vivo (Edc1p and Edc2p), we can reconstitute the activation of decapping with recombinant proteins. This indicates that the Edc1 and Edc2 proteins act directly on the decapping enzyme.  相似文献   

9.
10.
11.
12.
One of the rate-limiting steps in messenger RNA decay pathway is the 5'-cap cleavage of mRNAs, decapping reaction, which is conducted by the protein complex of Dcp1 and Dcp2. We find here that Dcp1p can interact with the release factor eRF3p (Sup35p) in Saccharomyces cerevisiae. Knockout of DCP1 caused not only the accumulation of nonsense mRNAs possibly due to the impaired decapping activity but also the enhancement of the read-through of nonsense codon. To examine the relationship between the two DCP1-knockout phenotypes, we produced DCP1 point mutants that lack the ability to support the translation termination. Interestingly, decapping activity of Dcp1p was still intact, but its interaction with eRF3p was abolished in the DCP1 mutants, indicating that the two functions originated from different entities of Dcp1p. These results suggest that the decapping enzyme Dcp1p may have an additional role in the translation termination through its interaction with eRF3p.  相似文献   

13.
14.
The tristetraprolin (TTP) family comprises zinc finger-containing AU-rich element (ARE)-binding proteins consisting of three major members: TTP, ZFP36L1, and ZFP36L2. The present study generated specific antibodies against each TTP member to evaluate its expression during differentiation of 3T3-L1 preadipocytes. In contrast to the inducible expression of TTP, results indicated constitutive expression of ZFP36L1 and ZFP36L2 in 3T3-L1 preadipocytes and their phosphorylation in response to differentiation signals. Physical RNA pull-down and functional luciferase assays revealed that ZFP36L1 and ZFP36L2 bound to the 3' untranslated region (UTR) of MAPK phosphatase-1 (MKP-1) mRNA and downregulated Mkp-1 3'UTR-mediated luciferase activity. Mkp-1 is an immediate early gene for which the mRNA is transiently expressed in response to differentiation signals. The half-life of Mkp-1 mRNA was longer at 30 min of induction than at 1 h and 2 h of induction. Knockdown of TTP or ZFP36L2 increased the Mkp-1 mRNA half-life at 1 h of induction. Knockdown of ZFP36L1, but not ZFP36L2, increased Mkp-1 mRNA basal levels via mRNA stabilization and downregulated ERK activation. Differentiation induced phosphorylation of ZFP36L1 through ERK and AKT signals. Phosphorylated ZFP36L1 then interacted with 14-3-3, which might decrease its mRNA destabilizing activity. Inhibition of adipogenesis also occurred in ZFP36L1 and TTP knockdown cells. The findings indicate that the differential expression of TTP family members regulates immediate early gene expression and modulates adipogenesis.  相似文献   

15.

Background

Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood.

Objective

As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes.

Methods and Results

The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished.

Conclusions

Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity.  相似文献   

16.
17.
A major pathway of eukaryotic mRNA turnover initiates with deadenylation, which allows a decapping reaction leading to 5'-3' exonucleolytic degradation. A key control point in this pathway is the decapping of the mRNA. Two proteins, Edc1 and Edc2, were genetically identified previously as enhancers of the decapping reaction. In this work, we demonstrate that Edc1p and Edc2p are RNA-binding proteins. In addition, recombinant Edc1p or Edc2p stimulates mRNA decapping in cell-free extracts or with purified decapping enzyme. These results suggest that Edc1p and Edc2p activate decapping directly by binding to the mRNA substrate and enhancing the activity of the decapping enzyme. Interestingly, edc1Delta strains show defects in utilization of glycerol as a carbon source and misregulation of several mRNAs in response to carbon-source changes. This identifies a critical role for decapping and Edc1p in alterations of gene expression in response to carbon-source changes.  相似文献   

18.
Recent experiments have defined cytoplasmic foci, referred to as processing bodies (P-bodies), that contain untranslating mRNAs in conjunction with proteins involved in translation repression and mRNA decapping and degradation. However, the order of protein assembly into P-bodies and the interactions that promote P-body assembly are unknown. To gain insight into how yeast P-bodies assemble, we examined the P-body accumulation of Dcp1p, Dcp2p, Edc3p, Dhh1p, Pat1p, Lsm1p, Xrn1p, Ccr4p, and Pop2p in deletion mutants lacking one or more P-body component. These experiments revealed that Dcp2p and Pat1p are required for recruitment of Dcp1p and of the Lsm1-7p complex to P-bodies, respectively. We also demonstrate that P-body assembly is redundant and no single known component of P-bodies is required for P-body assembly, although both Dcp2p and Pat1p contribute to P-body assembly. In addition, our results indicate that Pat1p can be a nuclear-cytoplasmic shuttling protein and acts early in P-body assembly. In contrast, the Lsm1-7p complex appears to primarily function in a rate limiting step after P-body assembly in triggering decapping. Taken together, these results provide insight both into the function of individual proteins involved in mRNA degradation and the mechanisms by which yeast P-bodies assemble.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号