首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferulate is a well-described natural antioxidant found in plants. It protects against cellular redox disruption and several oxidative stress-related diseases, including inflammation in animal studies. In this study, we examined ferulate for its ability to suppress redox-sensitive, proinflammatory NF-kappaB activation via NF-kappaB-inducing kinase (NIK)/IkappaB kinase (IKK) and mitogen-activated protein kinases (MAPKs) by reducing oxidative stress in aged rats. The experimental design was set as follows: Sprague-Dawley rats, ages 7 months (young) and 20 months (old) were used in this study, and dietary ferulate (0.01% or 0.02%) was fed to the old rats for 10 days. Data show that in aged kidney tissue, ferulate exhibited its antioxidative action by maintaining redox regulation, suppressing NF-kappaB activation and modulating the expression of NF-kappaB-induced, proinflammatory COX-2, iNOS, VCAM-1 and ICAM-1. Next, we examined cultured YPEN-1 endothelial cells and show that ferulate protected YPEN-1 cells against tert-butylhydroperoxide-induced oxidative stress. The molecular modulation of NF-kappaB by ferulate was further revealed in endothelial YPEN-1 cells through ferulate's ability to suppress the activation of NIK/IKK and MAPKs. Based on these results, we conclude that ferulate's antioxidative capacity suppressed the age-related increase in NF-kappaB activity through inhibition of NIK/IKK and MAPKs in vivo. This study may also suggest the potentiality of ferulate as a developable supplement against chronic inflammatory disease as well as aging.  相似文献   

2.
3.
NF-kappaB-inducing kinase (NIK) has been implicated as an essential component of NF-kappaB activation. However, the regulatory mechanism of NIK signaling remains elusive. We have identified a novel NIK interacting protein, TNAP (for TRAFs and NIK-associated protein). In mammalian cells, TNAP physically interacts with NIK, TRAF2, and TRAF3 but not IKK1 or IKK2. TNAP specifically inhibits NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, TNF receptor 1, TRADD, RIP, TRAF2, and NIK but does not affect IKK1- and IKK2-mediated NF-kappaB activation. Knockdown of TNAP by lentiviral-mediated small interference RNA potentiates TNF-alpha-induced NF-kappaB activation. TNAP suppresses NIK kinase activity and subsequently reduces p100 processing, p65 phosphorylation, and IkappaBalpha degradation. These data suggest that TNAP is a repressor of NIK activity and regulates both the classical and alternative NF-kappaB signaling pathways.  相似文献   

4.
The molecular inflammation hypothesis of aging proposes that redox dysregulation causes an age-related activation of NF-κB and its signaling to upregulate various proinflammatory genes. In the present study, we focused on the inactive form of the protein phosphastase 2 A (PP2A). More specifically, we aimed to define the correlation between PP2A inactivation and NF-κB activation by age-related oxidative stress. Experimentations were designed to determine the effect of oxidative stress-induced PP2A inactivation on NF-κB activity, utilizing prooxidants t-BHP and AAPH, the PTP inhibitor Na3VO4, and the PP2A inhibitor Calyculin A and PP2A siRNA, in HEK293T cells. We also assessed the phosphorylation of PP2A catalytic subunit (PP2Ac) and the activities of PP2A and NF-κB in aged rat kidney, utilizing aging-retarding 40% calorie restriction (CR) −60% of food intake and inflammation-triggering LPS paradigms. Results revealed that an oxidative stress-induced PTK/PTP imbalance led to phosphorylation of PP2Ac, following exposures to t-BHP, AAPH, and Na3VO4 in HEK293T cells. Subsequently, we found that Calyculin A and PP2A siRNA activates NIK/IKK and MAPKs, leading to upregulation of NF-κB and its dependent oxidative stress. Also, the contrasting relation between PP2A inactivation and NF-κB activation was confirmed by AAPH-induced oxidative status in mice, and non-induced normal status or LPS-induced inflammatory status in aged rats while the antioxidative, anti-inflammatory, anti-aging effects of CR significantly blunted these actions. Thus, we present evidence that PP2A inactivation via PTK/PTP imbalance provoked by oxidative stress causes NF-κB activation, which contributes to the accumulation of oxidative stress in aged rat kidney.  相似文献   

5.
6.
Je JH  Lee JY  Jung KJ  Sung B  Go EK  Yu BP  Chung HY 《FEBS letters》2004,566(1-3):183-189
4-Hydroxyhexenal (HHE) is known to affect redox balance during aging, included are vascular dysfunctions. To better understand vascular abnormality through the molecular alterations resulting from HHE accumulation in aging processes, we set out to determine whether up-regulation of mitogen-activated protein kinase (MAPK) by HHE is mediated through nuclear factor kappa B (NF-kappaB) activation in endothelial cells. HHE induced NF-kappaB activation by inhibitor of kappaB (IkappaB) phosphorylation via the IkappaB kinase (IKK)/NF-kappaB inducing kinase (NIK) pathway. HHE increased the activity of p38 MAPK and extracellular signal regulated kinase (ERK), but not c-jun NH(2)-terminal kinase, indicating that p38 MAPK and ERK are closely involved in HHE-induced NF-kappaB transactivation. Pretreatment with ERK inhibitor PD98059, and p38 MAPK inhibitor SB203580, attenuated the induction of p65 translocation, IkappaB phosphorylation, and NF-kappaB luciferase activity. These findings strongly suggest that HHE induces NF-kappaB activation through IKK/NIK pathway and/or p38 MAPK and ERK activation associated with oxidative stress in endothelial cells.  相似文献   

7.
8.
Heat shock (HS) was found to suppress the IkappaB/NF-kappaB cascade via the inhibition of IkappaB kinase (IKK) activity; however, the mechanism has not been clear. This study was undertaken to elucidate the detail of the mechanism involved. TNF-alpha-induced activation of IKK was suppressed by HS in human bronchial epithelial cells, and this was associated with the absence of IKK in the immunoprecipitates. It was not due to a degradation of IKK, but due to a conversion of IKK from a soluble to an insoluble form. IKK lost its activity rapidly upon exposure to HS in vitro. The time course of the insolubilization of IKK coincided with the decrease in IKK activity. However, inhibition of IKK insolubilization by the induction of thermotolerance did not reverse the HS-induced suppression of IKK activation and IkappaBalpha degradation. Upstream activators of IKK, such as NF-kappaB-inducing kinase (NIK) and IL-1R-associated kinase (IRAK) were also insolubilized by HS. The HS-induced insolubilization of NIK was not blocked by the induction of thermotolerance. Overexpression of NIK resumed TNF-alpha-induced activation of IKK in thermotolerant cells. These results indicate that the loss of activity of NIK, IRAK, and IKK through insolubilization is responsible for the HS-induced suppression of IkappaB/NF-kappaB pathway.  相似文献   

9.
Non-canonical NF-κB signaling is controlled by the precise regulation of NF-κB inducing kinase (NIK) stability. NIK is constitutively ubiquitylated by cellular inhibitor of apoptosis (cIAP) proteins 1 and 2, leading to its complete proteasomal degradation in resting cells. Following stimulation, cIAP-mediated ubiquitylation of NIK ceases and NIK is stabilized, allowing for inhibitor of κB kinase (IKK)α activation and non-canonical NF-κB signaling. Non-canonical NF-κB signaling is terminated by feedback phosphorylation of NIK by IKKα that promotes NIK degradation; however, the mechanism of active NIK protein turnover remains unknown. To address this question, we established a strategy to precisely distinguish between basal degradation of newly synthesized endogenous NIK and induced active NIK in stimulated cells. Using this approach, we found that IKKα-mediated degradation of signal-induced activated NIK occurs through the proteasome. To determine whether cIAP1 or cIAP2 play a role in active NIK turnover, we utilized a Smac mimetic (GT13072), which promotes degradation of these E3 ubiquitin ligases. As expected, GT13072 stabilized NIK in resting cells. However, loss of the cIAPs did not inhibit proteasome-dependent turnover of signal-induced NIK showing that unlike the basal regulatory mechanism, active NIK turnover is independent of cIAP1 and cIAP2. Our results therefore establish that the negative feedback control of IKKα-mediated NIK turnover occurs via a novel proteasome-dependent and cIAP-independent mechanism.  相似文献   

10.

Background

Previous reports suggest that NO may contribute to the pathophysiology of septic shock. Recently, we have synthesized and characterized a series of benzyl- and dibenzyl derivative of N-(3-aminobenzyl)acetamidine, a potent and selective inhibitor of iNOS, in vitro assay. We evaluated the molecular mechanisms by which these compounds are involved in the regulation of NOSs expression.

Methods

H9c2 cells were stimulated with lipopolysaccharide (LPS) in the presence or absence of acetamidine-derivative. The NOSs mRNA and protein, and activation of signaling pathways (Akt and NF-κB) were assayed.

Results

The induction of endotoxic shock in H9c2 with LPS caused an increase of inducible NOS and a down-regulation of constitutive NOS. The molecular mechanism involved in the modulation of NOSs expression in H9c2 cells upon LPS stimulation resulted in the modification of the redox state responsible for NF-kB nuclear translocation via NIK -IKKα/β-IkBα, simultaneously to the inactivation of the PI3K/Akt pathway. The compounds acted as an anti-inflammatory modulator.

Conclusion

These results suggest that LPS regulates the opposite NOS expression in H9c2 cells by modifying the redox state of these cells responsible for the NF-kB nuclear translocation via NIK–IKKα/β‐IkBα, simultaneous to the inactivation of the PI3K/Akt pathway. The new molecule acts as an anti-inflammatory modulator in LPS-induced inflammation in H9c2 cells by the restoration of eNOS and nNOS expressions, mechanistically involving the PI3K/Akt pathway.

General significance

This study delineates the underlying mechanisms of opposite NOSs expression in H9c2 cells stimulated with LPS.  相似文献   

11.
Magnesium Isoglycyrrhizinate (MgIG), a novel molecular compound extracted from licorice root, has exhibited greater anti-inflammatory activity and hepatic protection than glycyrrhizin and β-glycyrrhizic acid. In this study, we investigated the anti-inflammatory effect and the potential mechanism of MgIG on Lipopolysaccharide (LPS)-treated RAW264.7 cells. MgIG down-regulated LPS-induced pro-inflammatory mediators and enzymes in LPS-treated RAW264.7 cells, including TNF-α, IL-6, IL-1β, IL-8, NO and iNOS. The generation of reactive oxygen species (ROS) in LPS-treated RAW264.7 cells was also reduced. MgIG attenuated NF-κB translocation by inhibiting IKK phosphorylation and IκB-α degradation. Simultaneously, MgIG also inhibited LPS-induced activation of MAPKs, including p38, JNK and ERK1/2. Taken together, these results suggest that MgIG suppresses inflammation by blocking NF-κB and MAPK signaling pathways, and down-regulates ROS generation and inflammatory mediators.  相似文献   

12.
S-adenosylmethionine (SAM), N-acetylcysteine (NAC) and quercetin exhibit a chemoprotective effect. Likely this effect is mediated by counteracting, oxidative stress and NF-kB activation. To test this hypothesis F344 rats were subjected to hepatocarcinogenesis with or without antioxidants. NAC decreased foci in number and area, SAM and quercetin decreased area. Lipid-peroxidation was decreased by antioxidants, but only SAM increased glutathione. SAM, in its regulation from IKK downwards, abolished the NF-kB activation. NAC decreased IKK and IkB-a phosphorylation, and Rel-A/p65 and NF-kB binding, though the last two were affected with less intensity compared to the NF-kB inhibitor. Quercetin decreased Rel-A/p65, without modifying upstream signalling. Although all antioxidants inhibited oxidative stress as shown by reduction of lipid peroxidation, not all exerted the same effect on NF-kB signalling pathway and only SAM increased GSH. The mechanisms exerted by SAM in the reduction of foci makes this compound a potential liver cancer therapeutic agent.  相似文献   

13.
S-adenosylmethionine (SAM), N-acetylcysteine (NAC) and quercetin exhibit a chemoprotective effect. Likely this effect is mediated by counteracting, oxidative stress and NF-kB activation. To test this hypothesis F344 rats were subjected to hepatocarcinogenesis with or without antioxidants. NAC decreased foci in number and area, SAM and quercetin decreased area. Lipid-peroxidation was decreased by antioxidants, but only SAM increased glutathione. SAM, in its regulation from IKK downwards, abolished the NF-kB activation. NAC decreased IKK and IkB-a phosphorylation, and Rel-A/p65 and NF-kB binding, though the last two were affected with less intensity compared to the NF-kB inhibitor. Quercetin decreased Rel-A/p65, without modifying upstream signalling. Although all antioxidants inhibited oxidative stress as shown by reduction of lipid peroxidation, not all exerted the same effect on NF-kB signalling pathway and only SAM increased GSH. The mechanisms exerted by SAM in the reduction of foci makes this compound a potential liver cancer therapeutic agent.  相似文献   

14.
15.
16.
Oxidative stress-induced PARP activation has been recognized to be a main factor in the pathogenesis of cisplatin-induced nephrotoxicity. Accumulating literature has revealed that ACE inhibitors may exert beneficial effect in several disease models via preventing PARP activation. Based on this hypothesis, we have evaluated the renoprotective effect of enalapril, an ACE inhibitor, and its underlying mechanism(s) in cisplatin-induced renal injury in rats. Male Albino Wistar rats were orally administered normal saline or enalapril (10, 20 and 40?mg/kg) for 10 days. Nephrotoxicity was induced by a single dose of cisplatin (8?mg/kg; i.p.) on the 7th day. The animals were thereafter sacrificed on the 11th day and both the kidneys were excised and processed for biochemical, histopathological, molecular, and immunohistochemical studies. Enalapril (40?mg/kg) significantly prevented cisplatin-induced renal dysfunction. In comparison to cisplatin-treated group, the elevation of BUN and creatinine levels was significantly less in this group. This improvement in kidney injury markers was well substantiated with reduced PARP expression along with phosphorylation of MAPKs including JNK/ERK/p38. Enalapril, in a dose-dependent fashion, attenuated cisplatin-induced oxidative stress as evidenced by augmented GSH, SOD and catalase activities, reduced TBARS and oxidative DNA damage (8-OHDG), and Nox-4 protein expression. Moreover, enalapril dose dependently inhibited cisplatin-induced inflammation (NF-κB/IKK-β/IL-6/Cox-2/TNF-α expressions), apoptosis (increased Bcl-2 and reduced p53, cytochrome c, Bax and caspase-3 expressions, and TUNEL/DAPI positivity) and preserved the structural integrity of the kidney. Thus, enalapril attenuated cisplatin-induced renal injury via inhibiting PARP activation and subsequent MAPKs/TNF-α/NF-κB mediated inflammatory and apoptotic response.  相似文献   

17.
18.
We have recently demonstrated that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IkappaBalpha kinase (IKK) signaling pathways. However, the molecular mechanism(s) by which OPN regulates promatrix metalloproteinase-9 (pro-MMP-9) activation, MMP-9-dependent cell motility, and tumor growth and the involvement of upstream kinases in regulation of these processes in murine melanoma cells are not well defined. Here we report that OPN induced alpha(v)beta(3) integrin-mediated phosphorylation and activation of nuclear factor-inducing kinase (NIK) and enhanced the interaction between phosphorylated NIK and IKKalpha/beta in B16F10 cells. Moreover, NIK was involved in OPN-induced phosphorylations of MEK-1 and ERK1/2 in these cells. OPN induced NIK-dependent NFkappaB activation through ERK/IKKalpha/beta-mediated pathways. Furthermore OPN enhanced NIK-regulated urokinase-type plasminogen activator (uPA) secretion, uPA-dependent pro-MMP-9 activation, cell motility, and tumor growth. Wild type NIK, IKKalpha/beta, and ERK1/2 enhanced and kinase-negative NIK (mut NIK), dominant negative IKKalpha/beta (dn IKKalpha/beta), and dn ERK1/2 suppressed the OPN-induced NFkappaB activation, uPA secretion, pro-MMP-9 activation, cell motility, and chemoinvasion. Pretreatment of cells with anti-MMP-2 antibody along with anti-MMP-9 antibody drastically inhibited the OPN-induced cell migration and chemoinvasion, whereas cells pretreated with anti-MMP-2 antibody had no effect on OPN-induced pro-MMP-9 activation suggesting that OPN induces pro-MMP-2 and pro-MMP-9 activations through two distinct pathways. The level of active MMP-9 in the OPN-induced tumor was higher compared with control. To our knowledge, this is the first report that NIK plays a crucial role in OPN-induced NFkappaB activation, uPA secretion, and pro-MMP-9 activation through MAPK/IKKalpha/beta-mediated pathways, and all of these ultimately control the cell motility, invasiveness, and tumor growth.  相似文献   

19.
The present study has been designed and carried out to investigate the protective role of taurine (2-aminoethanesulphonic acid) against NaAsO2 induced nephrotoxicity. Oral administration of arsenic increased the productions of ROS and RNS, enhanced lipid peroxidation, protein carbonylation and decreased intracellular antioxidant defence in the kidney tissue. Investigating the responsible signalling cascades, it was found that NaAsO2 administration activates mitogen-activated protein kinases (MAPKs) and NF-κB in oxidative stress mediated renal dysfunction and induced apoptotic cell death by the reciprocal regulation of Bcl-2/Bad in association with reducing mitochondrial membrane potential and increased cytosolic cytochrome C as well. Treatment with taurine prior to arsenic administration effectively ameliorated As-induced oxidative renal dysfunctions and apoptotic cell death. Histological studies also support the experimental findings. Combining, results suggest that taurine possesses the ability to ameliorate arsenic-induced oxidative insult and renal damage, probably due to its antioxidant activity and functioning via MAPKs/NF-κB and mitochondria dependent pathways.  相似文献   

20.
We have previously shown that after DNA-damage, the p52 NF-kB subunit can function cooperatively with the p53 tumor suppressor to both repress and induce Skp2 expression. However, the wider role and activation of p52 after DNA-damage has not been determined. Activation of NF-kB in response to DNA break inducers can be mediated by ATM (ataxia telangiectasia mutated)-dependent phosphorylation of NEMO (NF-kB essential modulator), resulting in IKKβ mediated induction of the classical NF-kB pathway, leading to the induction of RelA(p65)/p50 dimers. Here, we show that DNA damage also induces p100 (NF-kB2) processing to generate active p52. We further demonstrate that p52 generation is dependent not only on IKKα but also on atypical activation by NEMO/ATM. Moreover, we identify a post-DNA damage, positive feedback loop of p52 activation through induction of NF-kB2 gene expression, involving both the classical and alternative NF-kB pathways. Gene expression and chromatin immunoprecipitation analyses indicated DNA damage induced p52 dimer recruitment on multiple, p53 dependent and independent, target genes associated with promoting cell cycle arrest and cell death. These results demonstrate an important role for the alternative, p52 NF-kB pathway after DNA-damage distinct from its functions as a regulator of adaptive immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号