首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Among a variety of inflammatory mediators, visfatin is a proinflammatory adipocytokine associated with inflammatory reactions in obesity, metabolic syndrome, chronic inflammatory disease, and autoimmune disease. However, the biological role of visfatin in secretion of major mucins in human airway epithelial cells has not been reported. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of visfatin on MUC8 and MUC5B expression in human airway epithelial cells.

Results

Visfatin significantly induced MUC8 and MUC5B expression. Visfatin significantly activated phosphorylation of p38 MAPK. Treatment with SB203580 (p38 MAPK inhibitor) and knockdown of p38 MAPK by siRNA significantly blocked visfatin-induced MUC8 and MUC5B expression.Visfatin significantly increased ROS formation. Treatment with SB203580 significantly attenuated visfatin-induced ROS formation. Treatment with NAC (ROS scavenger) and DPI (NADPH oxidase inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression. However, treatment with NAC and DPI did not attenuate visfatin-activated phosphorylation of p38 MAPK. Visfatin significantly activated the phosphorylation of NF-κB. Treatment with PDTC (NF-κB inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression.

Conclusions

These results suggest that visfatin induces MUC8 and MUC5B expression through p38 MAPK/ROS/NF-κB signaling pathway in human airway epithelial cells.  相似文献   

2.

Background

Recent studies suggest that HCV infection is associated with progressive declines in pulmonary function in patients with underlying pulmonary diseases such as asthma and chronic obstructive pulmonary disease. Few molecular studies have addressed the inflammatory aspects of HCV-associated pulmonary disease. Because IL-8 plays a fundamental role in reactive airway diseases, we examined IL-8 signaling in normal human lung fibroblasts (NHLF) in response to the HCV nucleocapsid core protein, a viral antigen shown to modulate intracellular signaling pathways involved in cell proliferation, apoptosis and inflammation.

Methods

NHLF were treated with HCV core protein and assayed for IL-8 expression, phosphorylation of the p38 MAPK pathway, and for the effect of p38 inhibition.

Results

Our studies demonstrate that soluble HCV core protein induces significant increases in both IL-8 mRNA and protein expression in a dose- and time-dependent manner. Treatment with HCV core led to phosphorylation of p38 MAPK, and expression of IL-8 was dependent upon p38 activation. Using TNFα as a co-stimulant, we observed additive increases in IL-8 expression. HCV core-mediated expression of IL-8 was inhibited by blocking gC1qR, a known receptor for soluble HCV core linked to MAPK signaling.

Conclusion

These studies suggest that HCV core protein can lead to enhanced p38- and gC1qR-dependent IL-8 expression. Such a pro-inflammatory role may contribute to the progressive deterioration in pulmonary function recently recognized in individuals chronically infected with HCV.  相似文献   

3.

Background

The signaling pathways that may modulate the pathogenesis of diseases induced by expanded polyglutamine proteins are not well understood.

Methodologies/Principal Findings

Herein we demonstrate that expanded polyglutamine protein cytotoxicity is mediated primarily through activation of p38MAPK and that the atypical PKC iota (PKCι) enzyme antagonizes polyglutamine-induced cell death through induction of the ERK signaling pathway. We show that pharmacological blockade of p38MAPK rescues cells from polyglutamine-induced cell death whereas inhibition of ERK recapitulates the sensitivity observed in cells depleted of PKCι by RNA interference. We provide evidence that two unrelated proteins with expanded polyglutamine repeats induce p38MAPK in cultured cells, and demonstrate induction of p38MAPK in an in vivo model of neurodegeneration (spinocerebellar ataxia 1, or SCA-1).

Conclusions/Significance

Taken together, our data implicate activated p38MAPK in disease progression and suggest that its inhibition may represent a rational strategy for therapeutic intervention in the polyglutamine disorders.  相似文献   

4.

Background

Cathepsin K (CatK), a cysteine protease with the potent elastolytic activity, plays a predominant role in intracellular elastin degradation in human dermal fibroblasts (HDFs), and contributes to solar elastosis. In previous studies, CatK expression was downregulated in photoaged skin and fibroblasts, but upregulated in acute UVA-irradiated skin and fibroblasts. The underlying mechanisms regulating UVA-induced CatK expression remain elusive.

Objective

This study investigates mechanisms involved in the regulation of UVA-induced CatK expression in HDFs.

Methods

Primary HDFs were exposed to UVA. Cell proliferation was analyzed using a colorimetric assay of relative cell number. Quantitative real-time RT-PCR and Western blot were performed to detect CatK expression in HDFs on three consecutive days after 10 J/cm2 UVA irradiation, or cells treated with increasing UVA doses. UVA-activated MAPK/AP-1 pathway was examined by Western blot. Effects of inhibition of MAPK pathway and knockdown of Jun and Fos on UVA-induced CatK expression were also measured by real-time RT-PCR and Western blot.

Results

UVA significantly increased CatK mRNA and protein expression in a dose-dependent manner. UVA-induced CatK expression occurred along with UVA-activated phosphorylation of JNK, p38 and Jun, UVA-increased expression of Fos. Inactivation of JNK and p38MAPK pathways both remarkably decreased UVA-induced CatK expression, which was suppressed more by inhibition of JNK pathway. Furthermore, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatK expression.

Conclusion

UVA is capable of increasing CatK expression in HDFs, most likely by activation of MAPK pathway and of AP-1, which has been shown to be the case for matrix metalloproteinases. As current strategies for selecting anti-photoaging agents focus on their ability to decrease MMPs'' expression through inhibiting UV- activated MAPK pathway, future strategies should also consider their effect on CatK expression.  相似文献   

5.

Background

Molecular mechanisms involved in the oxidative stress induced glucocorticoids insensitivity remain elusive. The mitogen-activated protein kinase phosphatase (MKP) 1 mediates a part of glucocorticoids action and can be modified by exogenous oxidants. Whether oxidant ozone (O3) can affect the function of MKP-1 and hence blunt the response to corticotherapy is not clear.

Methods

Here we employed a murine model of asthma established with ovalbumin (OVA) sensitization and challenge to evaluate the influence of O3 on the inhibitory effect of dexamethasone on AHR and airway inflammation, and by administration of SB239063, a selective p38 MAPK inhibitor, to explore the underlying involvements of the activation of p38 MAPK and the expression of MKP-1.

Results

Ozone exposure not only aggravated the pulmonary inflammation and AHR, but also decreased the inhibitory effects of dexamethasone, accompanied by the elevated oxidative stress, airway neutrophilia, enhanced phosphorylation of p38 MAPK, and upregulated expression of IL-17. Administration of SB239063 caused significant inhibition of the p38 MAPK phosphorylation, alleviation of the airway neutrophilia, and decrement of the ozone-induced IL-17 expression, and partly restored the ozone-impaired effects of dexamethasone. Ozone exposure not only decreased the protein expression of MKP-1, but also diminished the dexamethasone-mediated induction process of MKP-1 mRNA and protein expression.

Conclusions

The glucocorticoids insensitivity elicited by ozone exposure on current asthma model may involve the enhanced phosphorylation of p38 MAPK and disturbed expression of MKP-1.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0126-x) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Metabolic syndrome (MetS) is characterized by a cluster of health factors that indicate a higher risk for cardio-renal diseases. Recent evidence indicates that antioxidants from berries are alternative to attenuate oxidative stress and inflammation. We tested the hypothesis that inflammation-induced renal damage is triggered by the activation of TLR4, and subsequent modulation of redox-sensitive molecules and mitogen-activated protein kinase (MAPK) pathway.

Methods

Five-week old lean and obese Zucker rats (LZR and OZR) were fed a blueberry-enriched diet or an isocaloric control diet for 15 weeks. A glucose tolerance test and acute renal clearance experiments were performed. Gene and protein expression levels for TLR4, cytokines and phosphorylation of ERK and p38MAPK were measured. Kidney redox status and urinary albumin levels were quantified. Renal pathology was evaluated histologically.

Results

Control OZR exhibited lower glucose tolerance; exacerbated renal function parameters; increased oxidative stress. Gene and protein expression levels of TLR4 were higher and this was accompanied by increased renal pathology with extensive albuminuria and deterioration in antioxidant levels in OZR. In addition, OZR had increased phosphorylation of ERK and p38MAPK. Blueberry-fed OZR exhibited significant improvements in all these parameters compared to OZR.

Conclusion

TLR4-MAPK signaling pathway is a key to the renal structural injury and dysfunction in MetS and blueberry (BB) protect against this damage by inhibiting TLR4.

Significance

This is the first study to put forth a potential mechanism of TLR4-induced kidney damage in a model of MetS and to elucidate a downstream mechanism by which blueberry exert their reno-protective effects.  相似文献   

7.

Background

Ethanol-induced gut barrier disruption is associated with several gastrointestinal and liver disorders.

Aim

Since human data on effects of moderate ethanol consumption on intestinal barrier integrity and involved mechanisms are limited, the objectives of this study were to investigate effects of a single moderate ethanol dose on small and large intestinal permeability and to explore the role of mitogen activated protein kinase (MAPK) pathway as a primary signaling mechanism.

Methods

Intestinal permeability was assessed in 12 healthy volunteers after intraduodenal administration of either placebo or 20 g ethanol in a randomised cross-over trial. Localization of the tight junction (TJ) and gene expression, phosphorylation of the MAPK isoforms p38, ERK and JNK as indicative of activation were analyzed in duodenal biopsies. The role of MAPK was further examined in vitro using Caco-2 monolayers.

Results

Ethanol increased small and large intestinal permeability, paralleled by redistribution of ZO-1 and occludin, down-regulation of ZO-1 and up-regulation of myosin light chain kinase (MLCK) mRNA expression, and increased MAPK isoforms phosphorylation. In Caco-2 monolayers, ethanol increased permeability, induced redistribution of the junctional proteins and F-actin, and MAPK and MLCK activation, as indicated by phosphorylation of MAPK isoforms and myosin light chain (MLC), respectively, which could be reversed by pretreatment with either MAPK inhibitors or the anti-oxidant L-cysteine.

Conclusions

Administration of moderate ethanol dosage can increase both small and colon permeability. Furthermore, the data indicate a pivotal role for MAPK and its crosstalk with MLCK in ethanol-induced intestinal barrier disruption.

Trial Registration

ClinicalTrials.gov NCT00928733  相似文献   

8.

Background

Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family that is associated with the disease status and outcomes of osteoarthritis (OA). Here, we investigated the intracellular signaling pathways involved in CCL2-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human OA synovial fibroblasts (OASFs).

Methodology/Principal Findings

Stimulation of OASFs with CCL2 induced VCAM-1 expression. CCL2-mediated VCAM-1 expression was attenuated by CCR2 inhibitor (RS102895), PKCδ inhibitor (rottlerin), p38MAPK inhibitor (SB203580), and AP-1 inhibitors (curcumin and tanshinone IIA). Stimulation of cells with CCL2 increased PKCδ and p38MAPK activation. Treatment of OASFs with CCL2 also increased the c-Jun phosphorylation and c-Jun binding to the AP-1 element on the VCAM-1 promoter. Moreover, CCL2-mediated CCR2, PKCδ, p38MAPK, and AP-1 pathway promoted the adhesion of monocytes to the OASFs monolayer.

Conclusions/Significance

Our results suggest that CCL2 increases VCAM-1 expression in human OASFs via the CCR2, PKCδ, p38MAPK, c-Jun, and AP-1 signaling pathway. The CCL2-induced VCAM-1 expression promoted monocytes adhesion to human OASFs.  相似文献   

9.

Background and Objectives

Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK). Another MAPK, extracellular signal-related kinase (ERK), is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors.

Materials and Methods

A single Trima apheresis platelet unit (n = 12) was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20–24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters.

Results

Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties.

Conclusion

Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage.  相似文献   

10.

Background

Airway wall remodelling is an important pathology of asthma. Growth factor induced airway smooth muscle cell (ASMC) proliferation is thought to be the major cause of airway wall thickening in asthma. Earlier we reported that Dimethylfumarate (DMF) inhibits platelet-derived growth factor (PDGF)-BB induced mitogen and stress activated kinase (MSK)-1 and CREB activity as well as IL-6 secretion by ASMC. In addition, DMF altered intracellular glutathione levels and thereby reduced proliferation of other cell types.

Methods

We investigated the effect of DMF on PDGF-BB induced ASMC proliferation, on mitogen activated protein kinase (MAPK) activation; and on heme oxygenase (HO)-1 expression. ASMC were pre-incubated for 1 hour with DMF and/or glutathione ethylester (GSH-OEt), SB203580, hemin, cobalt-protoporphyrin (CoPP), or siRNA specific to HO-1 before stimulation with PDGF-BB (10 ng/ml).

Results

PDGF-BB induced ASMC proliferation was inhibited in a dose-dependant manner by DMF. PDGF-BB induced the phosphorylation of ERK1/2 and p38 MAPK, but not of JNK. DMF enhanced the PDGF-BB induced phosphorylation of p38 MAPK and there by up-regulated the expression of HO-1. HO-1 induction inhibited the proliferative effect of PDGF-BB. HO-1 expression was reversed by GSH-OEt, or p38 MAPK inhibition, or HO-1 siRNA, which all reversed the anti-proliferative effect of DMF.

Conclusion

Our data indicate that DMF inhibits ASMC proliferation by reducing the intracellular GSH level with subsequent activation of p38 MAPK and induction of HO-1. Thus, DMF might reduce ASMC and airway remodelling processes in asthma.  相似文献   

11.

Background

While hyperglycemia-induced oxidative stress damages peripheral neurons, technical limitations have, in part, prevented in vivo studies to determine the effect of hyperglycemia on the neurons in the central nervous system (CNS). While olfactory dysfunction is indicated in diabetes, the effect of hyperglycemia on olfactory receptor neurons (ORNs) remains unknown. In this study, we utilized manganese enhanced MRI (MEMRI) to assess the impact of hyperglycemia on axonal transport rates in ORNs. We hypothesize that (i) hyperglycemia induces oxidative stress and is associated with reduced axonal transport rates in the ORNs and (ii) hyperglycemia-induced oxidative stress activates the p38 MAPK pathway in association with phosphorylation of tau protein leading to the axonal transport deficits.

Research Design and Methods

T1-weighted MEMRI imaging was used to determine axonal transport rates post-streptozotocin injection in wildtype (WT) and superoxide dismutase 2 (SOD2) overexpressing C57Bl/6 mice. SOD2 overexpression reduces mitochondrial superoxide load. Dihydroethidium staining was used to quantify the reactive oxygen species (ROS), specifically, superoxide (SO). Protein and gene expression levels were determined using western blotting and Q-PCR analysis, respectively.

Results

STZ-treated WT mice exhibited significantly reduced axonal transport rates and significantly higher levels of ROS, phosphorylated p38 MAPK and tau protein as compared to the WT vehicle treated controls and STZ-treated SOD2 mice. The gene expression levels of p38 MAPK and tau remained unchanged.

Conclusion

Increased oxidative stress in STZ-treated WT hyperglycemic mice activates the p38 MAPK pathway in association with phosphorylation of tau and attenuates axonal transport rates in the olfactory system. In STZ-treated SOD-overexpressing hyperglycemic mice in which superoxide levels are reduced, these deficits are reversed.  相似文献   

12.

Background

Caffeic acid phenethyl ester (CAPE), a component of propolis, is reported to possess anti-inflammatory, anti-bacterial, anti-viral, and anti-tumor activities. Previously, our laboratory demonstrated the in vitro and in vivo bioactivity of CAPE and addressed the role of p53 and the p38 mitogen-activated protein kinase (MAPK) pathway in regulating CAPE-induced apoptosis in C6 glioma cells.

Results

C6 cancer cell lines were exposed to doses of CAPE; DNA fragmentation and MAPKs and NGF/P75NTR levels were then determined. SMase activity and ceramide content measurement as well as western blotting analyses were performed to clarify molecular changes. The present study showed that CAPE activated neutral sphingomyelinase (N-SMase), which led to the ceramide-mediated activation of MAPKs, including extracellular signal-regulated kinase (ERK), Jun N-terminus kinase (JNK), and p38 MAPK. In addition, CAPE increased the expression of nerve growth factor (NGF) and p75 neurotrophin receptor (p75NTR). The addition of an N-SMase inhibitor, GW4869, established that NGF/p75NTR was the downstream target of N-SMase/ceramide. Pretreatment with MAPK inhibitors demonstrated that MEK/ERK and JNK acted upstream and downstream, respectively, of NGF/p75NTR. Additionally, CAPE-induced caspase 3 activation and poly [ADP-ribose] polymerase cleavage were reduced by pretreatment with MAPK inhibitors, a p75NTR peptide antagonist, or GW4869.

Conclusions

Taken together, N-SMase activation played a pivotal role in CAPE-induced apoptosis by activation of the p38 MAPK pathway and NGF/p75NTR may explain a new role of CAPE induced apoptosis in C6 glioma.  相似文献   

13.

Aim of the Study

Hepatocellular carcinoma is one of the most malignant human cancers with high metastatic potential. The aim of this study is to investigate the anti-metastatic effect of genipin and its underlying mechanism.

Experimental Approach

The anti-metastatic potential of genipin was evaluated by both cell and animal model. Wound healing and invasion chamber assays were introduced to examine the anti-migration and anti-invasion action of genipin in human hepatocellular carcinoma cell HepG2 and MHCC97L; orthotopical implantation model was used for in vivo evaluation. Gelatin Zymography, Immunoblotting, quantitative real-time polymerase chain reaction and ELISA assays were used to study the mechanisms underlying genipin’s anti-metastatic effect.

Key Results

Genipin suppresses the motility and invasiveness of HepG2 and MHCC97L at non-toxic doses, which may be correlated to the inhibition of genipin on MMP-2 activities in the cells. No significant reduced expression of MMP-2 was observed either at mRNA or at protein level. Furthermore, genipin could specifically up-regulate the expression of TIMP-1, the endogenous inhibitor of MMP-2 activities. Silencing of TIMP-1 by RNA interference abolishes genipin’s anti-metastaic effect. Activation of p38 MAPK signaling was observed in genipin-treated cells, which is responsible for the TIMP-1 overexpression and MMP-2 inhibition. Presence of SB202190, the p38 MAPK inhibitor, attenuates the anti-metastatic potential of genipin in hepatocellular carcinoma. Orthotopical implantation model showed that genipin could suppress the intrahepatic metastatic as well as tumor expansion in liver without exhibiting potent toxicity.

Conclusion

Our findings demonstrated the potential of genipin in suppressing hepatocellular carcinoma metastasis, and p38/TIMP-1/MMP-2 pathway may be involved as the key mechanism of its anti-metastasis effect.  相似文献   

14.
15.

Background

BMPs are currently receiving attention for their role in tumorigenesis and tumor progression. Currently, most BMP expression studies are performed on carcinomas, and not much is known about the situation in sarcomas.

Methodology/Principal Findings

We have investigated the BMP expression profiles and Smad activation in clones from different spontaneous canine mammary tumors. Spindle cell tumor and osteosarcoma clones expressed high levels of BMPs, in particular BMP-2, -4 and -6. Clones from a scirrhous carcinoma expressed much lower BMP levels. The various clones formed different tumor types in nude mice but only clones that expressed high levels of BMP-6 gave bone formation. Phosphorylated Smad-1/5, located in the nucleus, was detected in tumors derived from clones expressing high levels of BMPs, indicating an active BMP signaling pathway and BMP-2 stimulation of mammary tumor cell clones in vitro resulted in activation of the Smad-1/5 pathway. In contrast BMP-2 stimulation did not induce phosphorylation of the non-Smad pathway p38 MAPK. Interestingly, an increased level of the BMP-antagonist chordin-like 1 was detected after BMP stimulation of non-bone forming clones.

Conclusions/Significance

We conclude that the specific BMP expression repertoire differs substantially between different types of mammary tumors and that BMP-6 expression most probably has a biological role in bone formation of canine mammary tumors.  相似文献   

16.
17.

Objective

IL-17A plays an important role in many inflammatory diseases and cancers. We aimed to examine the effect of IL-17A on the invasion of cervical cancer cells and study its related mechanisms.

Methods

Wound healing and matrigel transwell assays were used to examine the effect of IL-17A on cervical cancer cell migration and invasion by a panel of cervical cancer cell lines. The levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) were investigated using western blotting. The activity of p38 and nuclear factor-kappa B (NF-κB) signal pathway was detected too.

Results

Here, we showed that IL-17A could promote the migration and invasion of cervical cancer cells. Further molecular analysis showed that IL-17A could up-regulate the expressions and activities of MMP2 and MMP9, and down-regulate the expressions of TIMP-1 and TIMP-2. Furthermore, IL-17A also activates p38 signal pathway and increased p50 and p65 nuclear expression. In addition, treatment of cervical cancer cells with the pharmacological p38/NF-κB signal pathway inhibitors, SB203580 and PDTC, potently restored the roles of invasion and upregulation of MMPs induced by IL-17A.

Conclusion

IL-17A could promote the migration and invasion of cervical cancer cell via up-regulating MMP2 and MMP9 expression, and down-regulating TIMP-1 and TIMP-2 expression via p38/NF-κB signal pathway. IL-17A may be a potential target to improve the prognosis for patients with cervical cancer.  相似文献   

18.

Background

IL-24 (melanoma differentiation-associated gene-7 (mda-7)), a member of the IL-10 cytokine family, possesses the properties of a classical cytokine as well as tumor suppressor effects. The exact role of IL-24 in the immune system has not been defined but studies have indicated a role for IL-24 in inflammatory conditions such as psoriasis. The tumor suppressor effects of IL-24 include inhibition of angiogenesis, sensitization to chemotherapy, and p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis. Current knowledge on the regulation of IL-24 expression is sparse. Previous studies have suggested that mRNA stabilization is of major importance to IL-24 expression. Yet, the mechanisms responsible for the regulation of IL-24 mRNA stability remain unidentified. As p38 MAPK is known to regulate gene expression by interfering with mRNA degradation we examined the role of p38 MAPK in the regulation of IL-24 gene expression in cultured normal human keratinocytes.

Methodology/Principal Findings

In the present study we show that anisomycin- and IL-1β- induced IL-24 expression is strongly dependent on p38 MAPK activation. Studies of IL-24 mRNA stability in anisomycin-treated keratinocytes reveal that the p38 MAPK inhibitor SB 202190 accelerates IL-24 mRNA decay suggesting p38 MAPK to regulate IL-24 expression by mRNA-stabilizing mechanisms. The insertion of the 3′ untranslated region (UTR) of IL-24 mRNA in a tet-off reporter construct induces degradation of the reporter mRNA. The observed mRNA degradation is markedly reduced when a constitutively active mutant of MAPK kinase 6 (MKK6), which selectively activates p38 MAPK, is co-expressed.

Conclusions/Significance

Taken together, we here report p38 MAPK as a regulator of IL-24 expression and determine interference with destabilization mediated by the 3′ UTR of IL-24 mRNA as mode of action. As discussed in the present work these findings have important implications for our understanding of IL-24 as a tumor suppressor protein as well as an immune modulating cytokine.  相似文献   

19.

Background

A complex interplay between Leishmania and macrophages influences parasite survival and necessitates disruption of signaling molecules, eventually resulting in impairment of macrophage function. In this study, we demonstrate the immunomodulatory activity of Berberine chloride in Leishmania infected macrophages.

Principal Findings

The IC50 of Berberine chloride, a quaternary isoquinoline alkaloid was tested in an amastigote macrophage model and its safety index measured by a cell viability assay. It eliminated intracellular amastigotes, the IC50 being 2.8 fold lower than its IC50 in promastigotes (7.10 µM vs. 2.54 µM) and showed a safety index >16. Levels of intracellular and extracellular nitric oxide (NO) as measured by flow cytometry and Griess assay respectively showed that Berberine chloride in Leishmania infected macrophages increased production of NO. Measurement of the mRNA expression of iNOS, IL-12 and IL-10 by RT-PCR along with levels of IL-12p40 and IL-10 by ELISA showed that in infected macrophages, Berberine chloride enhanced expression of iNOS and IL-12p40, concomitant with a downregulation of IL-10. The phosphorylation status of extracellular signal related kinase (ERK1/2) and p38 mitogen activated protein kinase (p38 MAPK) was studied by western blotting. In infected macrophages, Berberine chloride caused a time dependent activation of p38 MAPK along with deactivation of ERK1/2; addition of a p38 MAPK inhibitor SB203580 inhibited the increased generation of NO and IL-12p40 by Berberine chloride as also prevented its decrease of IL-10.

Conclusions

Berberine chloride modulated macrophage effector responses via the mitogen activated protein kinase (MAPK) pathway, highlighting the importance of MAPKs as an antiparasite target.  相似文献   

20.

Background

Wound healing is a highly dynamic process that requires signaling from the extracellular matrix to the fibroblasts for migration and proliferation, and closure of the wound. This rate of wound closure is impaired in diabetes, which may be due to the increased levels of the precursor for advanced glycation end products, 3-deoxyglucosone (3DG). Previous studies suggest a differential role for p38 mitogen-activated kinase (MAPK) during wound healing; whereby, p38 MAPK acts as a growth kinase during normal wound healing, but acts as a stress kinase during diabetic wound repair. Therefore, we investigated the signaling cross-talk by which p38 MAPK mediates wound healing in fibroblasts cultured on native collagen and 3DG-collagen.

Methodology/Principal Findings

Using human dermal fibroblasts cultured on 3DG-collagen as a model of diabetic wounds, we demonstrated that p38 MAPK can promote either cell growth or cell death, and this was dependent on the activation of AKT and ERK1/2. Wound closure on native collagen was dependent on p38 MAPK phosphorylation of AKT and ERK1/2. Furthermore, proliferation and collagen production in fibroblasts cultured on native collagen was dependent on p38 MAPK regulation of AKT and ERK1/2. In contrast, 3DG-collagen decreased fibroblast migration, proliferation, and collagen expression through ERK1/2 and AKT downregulation via p38 MAPK.

Conclusions/Significance

Taken together, the present study shows that p38 MAPK is a key signaling molecule that plays a significantly opposite role during times of cellular growth and cellular stress, which may account for the differing rates of wound closure seen in diabetic populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号