首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.

Background

Waddlia chondrophila (W. chondrophila) is an emerging agent of respiratory and reproductive disease in humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial agents, such as Chlamydia abortus (C. abortus). The current study investigated the growth characteristics and innate immune responses of human and ruminant epithelial cells in response to infection with W. chondrophila.

Methods

Human epithelial cells (HEp2) were infected with W. chondrophila for 24h. CXCL8 release was significantly elevated in each of the cell lines by active-infection with live W. chondrophila, but not by exposure to UV-killed organisms. Inhibition of either p38 or p42/44 MAPK significantly inhibited the stimulation of CXCL8 release in each of the cell lines. To determine the pattern recognition receptor through which CXCL8 release was stimulated, wild-type HEK293 cells which express no TLR2, TLR4, NOD2 and only negligible NOD1 were infected with live organisms. A significant increase in CXCL8 was observed.

Conclusions/Significance

W. chondrophila actively infects and replicates within both human and ruminant epithelial cells stimulating CXCL8 release. Release of CXCL8 is significantly inhibited by inhibition of either p38 or p42/44 MAPK indicating a role for this pathway in the innate immune response to W. chondrophila infection. W. chondrophila stimulation of CXCL8 secretion in HEK293 cells indicates that TLR2, TLR4, NOD2 and NOD1 receptors are not essential to the innate immune response to infection.  相似文献   

4.
5.
6.
7.
It is well established that calcium is a critical signaling molecule in the transduction of taste stimuli within the peripheral taste system. However, little is known about the regulation and termination of these calcium signals in the taste system. The authors used Western blot, immunocytochemical, and RT-PCR analyses to evaluate the expression of multiple calcium binding proteins in mouse circumvallate taste papillae, including parvalbumin, calbindin D28k, calretinin, neurocalcin, NCS-1 (or frequenin), and CaBP. They found that all of the calcium binding proteins they tested were expressed in mouse circumvallate taste cells with the exception of NCS-1. The authors correlated the expression patterns of these calcium binding proteins with a marker for type II cells and found that neurocalcin was expressed in 80% of type II cells, whereas parvalbumin was found in less than 10% of the type II cells. Calretinin, calbindin, and CaBP were expressed in about half of the type II cells. These data reveal that multiple calcium binding proteins are highly expressed in taste cells and have distinct expression patterns that likely reflect their different roles within taste receptor cells.  相似文献   

8.
The epithelium forms a physical barrier important to the detection of pathogens. P. aeruginosa infections are frequently encountered in Cystic Fibrosis lungs, lead to ERK1/ERK2 activation and contribute to tissue destruction. We report here that in bronchial airway epithelial cells (BEAS-2B), diffusible material from P. aeruginosa and TLR2, TLR3 and TLR5 ligands activates ERK1/ERK2 via the protein kinase TPL2 and not the growth factor receptor EGFR. Activation of TPL2 by these agonists in airway epithelial cells requires the protein kinases TAK1 and IKKβ in accordance with the previously reported model of activation of TPL2 in macrophages. Inhibition of TPL2 activity with a pharmacological inhibitor (Compound 1) not only prevented ERK1/ERK2 activation but also decreased cytokine synthesis in response to pathogen-associated molecular patterns. These results suggest that inhibition of the protein kinase TPL2 is an attractive strategy to decrease inflammation in the lungs when it is not warranted.  相似文献   

9.
10.
Microtubule-associated protein 1B (MAP1B) is a neuronal protein involved in the stabilization of microtubules both in the axon and somatodendritic compartments. Acute, genetic inactivation of MAP1B leads to delayed axonal outgrowth, most likely due to changes in the post-translational modification of tubulin subunits, which enhances microtubule polymerization. Furthermore, MAP1B deficiency is accompanied by abnormal actin microfilament polymerization and dramatic changes in the activity of small GTPases controlling the actin cytoskeleton. In this work, we showed that MAP1B interacts with a guanine exchange factor, termed Tiam1, which specifically activates Rac1. These proteins co-segregated in neurons, and interact in both heterologous expression systems and primary neurons. We dissected the molecular domains involved in the MAP1B-Tiam1 interaction, and demonstrated that pleckstrin homology (PH) domains in Tiam1 are responsible for MAP1B binding. Interestingly, only the light chain 1 (LC1) of MAP1B was able to interact with Tiam1. Moreover, it was able to increase the activity of the small GTPase, Rac1. These results suggest that the interaction between Tiam1 and MAP1B, is produced by the binding of LC1 with PH domains in Tiam1. The formation of such a complex impacts on the activation levels of Rac1 confirming a novel function of MAP1B related with the control of small GTPases. These results also support the idea of cross-talk between cytoskeleton compartments inside neuronal cells.  相似文献   

11.
建立胎鼠肺泡II型上皮细胞(AECII)与肺成纤维细胞(LF)共培养模型,观察与LF共培养下AECII的生物学特性。倒置相差显微镜观察AECII形态和基本生长情况;RT-PCR和流式细胞术分别检测肺泡表面活性蛋白-C(SP-C)、水通道蛋白5(AQP5)mRNA及蛋白质表达;流式细胞术检测细胞周期及Ki67表达。结果显示,与LF共培养时,AECII能较好地保留其细胞形态,SP-CmRNA及其蛋白质表达明显增加,而AQP5mRNA及其蛋白质表达则明显减少;LF促进AECII增殖,使G2/M、S期细胞及表达Ki67 细胞的比率明显增多。结果提示,AECII与LF共培养时,能更好地保留其细胞形态、分化及增殖特性。  相似文献   

12.
13.
Ankyrin repeat and LEM-domain containing protein 1 (ANKLE1) is a GIY-YIG endonuclease with unknown functions, mainly expressed in mouse hematopoietic tissues. To test its potential role in hematopoiesis we generated Ankle1-deficient mice. Ankle1Δ/Δ mice are viable without any detectable phenotype in hematopoiesis. Neither hematopoietic progenitor cells, myeloid and lymphoid progenitors, nor B and T cell development in bone marrow, spleen and thymus, are affected in Ankle1Δ/Δ-mice. Similarly embryonic stress erythropoiesis in liver and adult erythropoiesis in bone marrow and spleen appear normal. To test whether ANKLE1, like the only other known GIY-YIG endonuclease in mammals, SLX1, may contribute to Holliday junction resolution during DNA repair, Ankle1-deficient cells were exposed to various DNA-damage inducing agents. However, lack of Ankle1 did not affect cell viability and, unlike depletion of Slx1, Ankle1-deficiency did not increase sister chromatid exchange in Bloom helicase-depleted cells. Altogether, we show that lack of Ankle1 does neither affect mouse hematopoiesis nor DNA damage repair in mouse embryonic fibroblasts, indicating a redundant or non-essential function of ANKLE1 in mouse.  相似文献   

14.
A constant supply of epithelial cells from dental epithelial stem cell (DESC) niches in the cervical loop (CL) enables mouse incisors to grow continuously throughout life. Elucidation of the cellular and molecular mechanisms underlying this unlimited growth potential is of broad interest for tooth regenerative therapies. Fibroblast growth factor (FGF) signaling is essential for the development of mouse incisors and for maintenance of the CL during prenatal development. However, how FGF signaling in DESCs controls the self-renewal and differentiation of the cells is not well understood. Herein, we report that FGF signaling is essential for self-renewal and the prevention of cell differentiation of DESCs in the CL as well as in DESC spheres. Inhibiting the FGF signaling pathway decreased proliferation and increased apoptosis of the cells in DESC spheres. Suppressing FGFR or its downstream signal transduction pathways diminished Lgr5-expressing cells in the CL and promoted cell differentiation both in DESC spheres and the CL. Furthermore, disruption of the FGF pathway abrogated Wnt signaling to promote Lgr5 expression in DESCs both in vitro and in vivo. This study sheds new light on understanding the mechanism by which the homeostasis, expansion, and differentiation of DESCs are regulated.  相似文献   

15.
16.
Acute lung injury is characterized by injury to the lung epithelium that leads to impaired resolution of pulmonary edema and also facilitates accumulation of protein-rich edema fluid and inflammatory cells in the distal airspaces of the lung. Recent in vivo and in vitro studies suggest that mesenchymal stem cells (MSC) may have therapeutic value for the treatment of acute lung injury. Here we tested the ability of human allogeneic mesenchymal stem cells to restore epithelial permeability to protein across primary cultures of polarized human alveolar epithelial type II cells after an inflammatory insult. Alveolar epithelial type II cells were grown on a Transwell plate with an air-liquid interface and injured by cytomix, a combination of IL-1β, TNFα, and IFNγ. Protein permeability measured by 131I-labeled albumin flux was increased by 5-fold over 24 h after cytokine-induced injury. Co-culture of human MSC restored type II cell epithelial permeability to protein to control levels. Using siRNA knockdown of potential paracrine soluble factors, we found that angiopoietin-1 secretion was responsible for this beneficial effect in part by preventing actin stress fiber formation and claudin 18 disorganization through suppression of NFκB activity. This study provides novel evidence for a beneficial effect of MSC on alveolar epithelial permeability to protein.  相似文献   

17.
The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met823 was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg822. The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met823 or Arg822 was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg822 and Met823.  相似文献   

18.
Proximal renal tubular acidosis (pRTA) is a syndrome caused by abnormal proximal tubule reabsorption of bicarbonate resulting in metabolic acidosis. Patients with mutations to the SLC4A4 gene (coding for the sodium bicarbonate cotransporter NBCe1), have pRTA, growth delay, ocular defects, and enamel abnormalities. In an earlier report, we provided the first evidence that enamel cells, the ameloblasts, express NBCe1 in a polarized fashion, thereby contributing to trans-cellular bicarbonate transport. To determine whether NBCe1 plays a critical role in enamel development, we studied the expression of NBCe1 at various stages of enamel formation in wild-type mice and characterized the biophysical properties of enamel in NBCe1−/− animals. The enamel of NBCe1−/− animals was extremely hypomineralized and weak with an abnormal prismatic architecture. The expression profile of amelogenin, a known enamel-specific gene, was not altered in NBCe1−/− animals. Our results show for the first time that NBCe1 expression is required for the development of normal enamel. This study provides a mechanistic model to account for enamel abnormalities in certain patients with pRTA.  相似文献   

19.
Mast cells play a central role in both innate and acquired immunity. When activated by IgE-dependent FcεRI cross-linking, mast cells rapidly initiate a signaling cascade and undergo an extensive release of their granule contents, including inflammatory mediators. Some SNARE (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor) proteins and SM (Sec1/Munc18) family proteins are involved in mast cell degranulation. However, the function of syntaxin binding protein 1 (STXBP1), a member of SM family, in mast cell degranulation is currently unknown. In this study, we examined the role of STXBP1 in IgE-dependent mast cell activation. Liver-derived mast cells (LMCs) from wild-type and STXBP1-deficient mice were cultured in vitro for the study of mast cell maturation, degranulation, cytokine and chemokine production, as well as MAPK, IκB-NFκB, and NFAT signaling pathways. In addition, in vivo models of passive cutaneous anaphylaxis and late-phase IgE-dependent inflammation were conducted in mast cell deficient Wsh mice that had been reconstituted with wild-type or STXBP1-deficient mast cells. Our findings indicate that STXBP1 is not required for any of these important functional mechanisms in mast cells both in vitro and in vivo. Our results demonstrate that STXBP1 is dispensable during IgE-mediated mast cell activation and in IgE-dependent allergic inflammatory reactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号