首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virophages, which are potentially important ecological regulators, have been discovered in association with members of the order Megavirales. Sputnik virophages target the Mimiviridae, Mavirus was identified with the Cafeteria roenbergensis virus, and virophage genomes reconstructed by metagenomic analyses may be associated with the Phycodnaviridae. Despite the fact that the Sputnik virophages were isolated with viruses belonging to group A of the Mimiviridae, they can grow in amoebae infected by Mimiviridae from groups A, B or C. In this study we describe Zamilon, the first virophage isolated with a member of group C of the Mimiviridae family. By co-culturing amoebae with purified Zamilon, we found that the virophage is able to multiply with members of groups B and C of the Mimiviridae family but not with viruses from group A. Zamilon has a 17,276 bp DNA genome that potentially encodes 20 genes. Most of these genes are closely related to genes from the Sputnik virophage, yet two are more related to Megavirus chiliensis genes, a group B Mimiviridae, and one to Moumouvirus monve transpoviron.  相似文献   

2.
噬病毒体     
噬病毒体是一种能感染其它病毒,通过损害宿主病毒来完成自我复制的病毒。目前已经先后发现三种噬病毒体:Sputnik、Mavirus和OLV(有机湖噬病毒体)。大多数噬病毒体都在低级的生命形式如阿米巴变形虫中被发现。噬病毒体能抑制宿主病毒的增殖和裂解细胞的能力,并且噬病毒体只有在宿主病毒存在时才能增殖。噬病毒体的发现开启了一条新的探索病毒间相互作用的途径。本文主要就噬病毒体的发现过程、噬病毒体的基本特征及噬病毒体感染宿主病毒的机制进行概述。  相似文献   

3.
Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested.  相似文献   

4.
Acanthamoeba polyphaga Mimivirus is a giant double-stranded DNA virus defining a new genus, the Mimiviridae, among the Nucleo-Cytoplasmic Large DNA Viruses (NCLDV). We used utrastructural studies to shed light on the different steps of the Mimivirus replication cycle: entry via phagocytosis, release of viral DNA into the cell cytoplasm through fusion of viral and vacuolar membranes, and finally viral morphogenesis in an extraordinary giant cytoplasmic virus factory (VF). Fluorescent staining of the AT-rich Mimivirus DNA showed that it enters the host nucleus prior to the generation of a cytoplasmic independent replication centre that forms the core of the VF. Assembly and filling of viral capsids were observed within the replication centre, before release into the cell cytoplasm where progeny virions accumulated. 3D reconstruction from fluorescent and differential contrast interference images revealed the VF emerging from the cell surface as a volcano-like structure. Its size dramatically grew during the 24 h infectious lytic cycle. Our results showed that Mimivirus replication is an extremely efficient process that results from a rapid takeover of cellular machinery, and takes place in a unique and autonomous giant assembly centre, leading to the release of a large number of complex virions through amoebal lysis.  相似文献   

5.
Mimivirus, a giant DNA virus (i.e. “girus”) infecting species of the genus Acanthamoeba, was first identified in 2003. With a particle size of 0.7 μm in diameter, and a genome size of 1.2 Mb encoding more than 900 proteins, it is the most complex virus described to date. Beyond its unusual size, the Mimivirus genome was found to contain the first viral homologues of many genes thought to be the trademark of cellular organisms, such as central components of the translation apparatus. These findings revived the debate on the origin of DNA viruses, and the role they might have played in the emergence of eukaryotes. Published and ongoing studies on Mimivirus continue to lead to unexpected findings concerning a variety of aspects, such as the structure of its particle, unique features of its replication cycle, or the distribution and abundance of Mimivirus relatives in the oceans. Following a summary of these recent findings, we present preliminary results suggesting that octocorals might have come in close contact with an ancestor of Mimivirus, and that modern sponges might be host to a yet unidentified, even larger, member of the Mimiviridae.  相似文献   

6.

Background

The rapidly growing metagenomic databases provide increasing opportunities for computational discovery of new groups of organisms. Identification of new viruses is particularly straightforward given the comparatively small size of viral genomes, although fast evolution of viruses complicates the analysis of novel sequences. Here we report the metagenomic discovery of a distinct group of diverse viruses that are distantly related to the eukaryotic virus-like transposons of the Polinton superfamily.

Results

The sequence of the putative major capsid protein (MCP) of the unusual linear virophage associated with Phaeocystis globosa virus (PgVV) was used as a bait to identify potential related viruses in metagenomic databases. Assembly of the contigs encoding the PgVV MCP homologs followed by comprehensive sequence analysis of the proteins encoded in these contigs resulted in the identification of a large group of Polinton-like viruses (PLV) that resemble Polintons (polintoviruses) and virophages in genome size, and share with them a conserved minimal morphogenetic module that consists of major and minor capsid proteins and the packaging ATPase. With a single exception, the PLV lack the retrovirus-type integrase that is encoded in the genomes of all Polintons and the Mavirus group of virophages. However, some PLV encode a newly identified tyrosine recombinase-integrase that is common in bacteria and bacteriophages and is also found in the Organic Lake virophage group. Although several PLV genomes and individual genes are integrated into algal genomes, it appears likely that most of the PLV are viruses. Given the absence of protease and retrovirus-type integrase, the PLV could resemble the ancestral polintoviruses that evolved from bacterial tectiviruses. Apart from the conserved minimal morphogenetic module, the PLV widely differ in their genome complements but share a gene network with Polintons and virophages, suggestive of multiple gene exchanges within a shared gene pool.

Conclusions

The discovery of PLV substantially expands the emerging class of eukaryotic viruses and transposons that also includes Polintons and virophages. This class of selfish elements is extremely widespread and might have been a hotbed of eukaryotic virus, transposon and plasmid evolution. New families of these elements are expected to be discovered.
  相似文献   

7.
The discovery of Mimivirus, with its very large genome content, made it possible to identify genes common to the three domains of life (Eukarya, Bacteria and Archaea) and to generate controversial phylogenomic trees congruent with that of ribosomal genes, branching Mimivirus at its root. Here we used sequences from metagenomic databases, Marseillevirus and three new viruses extending the Mimiviridae family to generate the phylogenetic trees of eight proteins involved in different steps of DNA processing. Compared to the three ribosomal defined domains, we report a single common origin for Nucleocytoplasmic Large DNA Viruses (NCLDV), DNA processing genes rooted between Archaea and Eukarya, with a topology congruent with that of the ribosomal tree. As for translation, we found in our new viruses, together with Mimivirus, five proteins rooted deeply in the eukaryotic clade. In addition, comparison of informational genes repertoire based on phyletic pattern analysis supports existence of a clade containing NCLDVs clearly distinct from that of Eukarya, Bacteria and Archaea. We hypothesize that the core genome of NCLDV is as ancient as the three currently accepted domains of life.  相似文献   

8.
Mimivirus is the largest known virus whose genome and physical size are comparable to some small bacteria, blurring the boundary between a virus and a cell. Structural studies of Mimivirus have been difficult because of its size and long surface fibers. Here we report the use of enzymatic digestions to remove the surface fibers of Mimivirus in order to expose the surface of the viral capsid. Cryo-electron microscopy (cryoEM) and atomic force microscopy were able to show that the 20 icosahedral faces of Mimivirus capsids have hexagonal arrays of depressions. Each depression is surrounded by six trimeric capsomers that are similar in structure to those in many other large, icosahedral double-stranded DNA viruses. Whereas in most viruses these capsomers are hexagonally close-packed with the same orientation in each face, in Mimivirus there are vacancies at the systematic depressions with neighboring capsomers differing in orientation by 60°. The previously observed starfish-shaped feature is well-resolved and found to be on each virus particle and is associated with a special pentameric vertex. The arms of the starfish fit into the gaps between the five faces surrounding the unique vertex, acting as a seal. Furthermore, the enveloped nucleocapsid is accurately positioned and oriented within the capsid with a concave surface facing the unique vertex. Thus, the starfish-shaped feature and the organization of the nucleocapsid might regulate the delivery of the genome to the host. The structure of Mimivirus, as well as the various fiber components observed in the virus, suggests that the Mimivirus genome includes genes derived from both eukaryotic and prokaryotic organisms. The three-dimensional cryoEM reconstruction reported here is of a virus with a volume that is one order of magnitude larger than any previously reported molecular assembly studied at a resolution of equal to or better than 65 Å.  相似文献   

9.
Mimivirus (Acanthamoeba polyphaga mimivirus) was the first giant DNA virus identified in an amoeba species. Its genome contains at least 979 genes. One of these, L276, encodes a nucleotide translocator with similarities to mitochondrial metabolite carriers, provisionally named viral mitochondrial carrier 1 (VMC1). In this study, we investigated the intracellular distribution of VMC1 upon expression in HeLa cells and in the yeast Saccharomyces cerevisiae. We found that VMC1 is specifically targeted to mitochondria and to the inner mitochondrial membrane. Newly synthesized VMC1 binds to the mitochondrial outer-membrane protein Tom70 and translocates through the import channel formed by the β-barrel protein Tom40. Derivatization of the four cysteine residues inside Tom40 by N-ethylmaleimide caused a delay in translocation but not a complete occlusion. Cell viability was not reduced by VMC1. Neither the mitochondrial membrane potential nor the intracellular production of reactive oxygen species was affected. Similar to endogenous metabolite carriers, mimivirus-encoded VMC1 appears to act as a specific translocator in the mitochondrial inner membrane. Due to its permeability for deoxyribonucleotides, VMC1 confers to the mitochondria an opportunity to contribute nucleotides for the replication of the large DNA genome of the virus.  相似文献   

10.
Large viruses infecting algae or amoebae belong to the NucleoCytoplasmic Large DNA Viruses (NCLDV) and present genotypic and phenotypic characteristics that have raised major interest among microbiologists. Here, we describe a new large virus discovered in Acanthamoeba castellanii co-culture of an environmental sample. The virus, referred to as Lausannevirus, has a very limited host range, infecting Acanthamoeba spp. but being unable to infect other amoebae and mammalian cell lines tested. Within A. castellanii, this icosahedral virus of about 200 nm exhibits a development cycle similar to Mimivirus, with an eclipse phase 2 h post infection and a logarithmic growth leading to amoebal lysis in less than 24 h. The 346 kb Lausannevirus genome presents similarities with the recently described Marseillevirus, sharing 89% of genes, and thus belongs to the same family as confirmed by core gene phylogeny. Interestingly, Lausannevirus and Marseillevirus genomes both encode three proteins with predicted histone folds, including two histone doublets, that present similarities to eukaryotic and archaeal histones. The discovery of Lausannevirus and the analysis of its genome provide some insight in the evolution of these large amoebae-infecting viruses.  相似文献   

11.
The discovery of Acanthamoeba polyphaga Mimivirus, the first isolated giant virus of amoeba, challenged the historical hallmarks defining a virus. Giant virion sizes are known to reach up to 2.3 µm, making them visible by optical microscopy. Their large genome sizes of up to 2.5 Mb can encode proteins involved in the translation apparatus. We have investigated possible energy production in Pandoravirus massiliensis. Mitochondrial membrane markers allowed for the detection of a membrane potential in purified virions and this was enhanced by a regulator of the tricarboxylic acid cycle but abolished by the use of a depolarizing agent. Bioinformatics was employed to identify enzymes involved in virion proton gradient generation and this approach revealed that eight putative P. massiliensis proteins exhibited low sequence identities with known cellular enzymes involved in the universal tricarboxylic acid cycle. Further, all eight viral genes were transcribed during replication. The product of one of these genes, ORF132, was cloned and expressed in Escherichia coli, and shown to function as an isocitrate dehydrogenase, a key enzyme of the tricarboxylic acid cycle. Our findings show for the first time that a membrane potential can exist in Pandoraviruses, and this may be related to tricarboxylic acid cycle. The presence of a proton gradient in P. massiliensis makes this virus a form of life for which it is legitimate to ask the question “what is a virus?”.Subject terms: Virology, Molecular evolution  相似文献   

12.
Mimivirus is one the largest DNA virus identified so far, infecting several Acanthamoeba species. Analysis of its genome revealed the presence of a nine-gene cluster containing genes potentially involved in glycan formation. All of these genes are co-expressed at late stages of infection, suggesting their role in the formation of the long fibers covering the viral surface. Among them, we identified the L136 gene as a pyridoxal phosphate-dependent sugar aminotransferase. This enzyme was shown to catalyze the formation of UDP-4-amino-4,6-dideoxy-D-glucose (UDP-viosamine) from UDP-4-keto-6-deoxy-D-glucose, a key compound involved also in the biosynthesis of L-rhamnose. This finding further supports the hypothesis that Mimivirus encodes a glycosylation system that is completely independent of the amoebal host. Viosamine, together with rhamnose, (N-acetyl)glucosamine, and glucose, was found as a major component of the viral glycans. Most of the sugars were associated with the fibers, confirming a capsular-like nature of the viral surface. Phylogenetic analysis clearly indicated that L136 was not a recent acquisition from bacteria through horizontal gene transfer, but it was acquired very early during evolution. Implications for the origin of the glycosylation machinery in giant DNA virus are also discussed.  相似文献   

13.
Viruses are believed to be the obligate intracellular parasites that only carry genes essential for infecting and hijacking the host cell machinery. However, a recently discovered group of viruses belonging to the phylum nucleocytovirocota, also known as the nucleo-cytoplasmic large DNA viruses (NCLDVs), possess a number of genes that code for proteins predicted to be involved in metabolism, and DNA replication, and repair. In the present study, first, using proteomics of viral particles, we show that several proteins required for the completion of the DNA base excision repair (BER) pathway are packaged within the virions of Mimivirus as well as related viruses while they are absent from the virions of Marseillevirus and Kurlavirus that are NCLDVs with smaller genomes. We have thoroughly characterized three putative base excision repair enzymes from Mimivirus, a prototype NCLDV and successfully reconstituted the BER pathway using the purified recombinant proteins. The mimiviral uracil-DNA glycosylase (mvUDG) excises uracil from both ssDNA and dsDNA, a novel finding contrary to earlier studies. The putative AP-endonuclease (mvAPE) specifically cleaves at the abasic site created by the glycosylase while also exhibiting the 3′-5′ exonuclease activity. The Mimivirus polymerase X protein (mvPolX) can bind to gapped DNA substrates and perform single nucleotide gap-filling followed by downstream strand displacement. Furthermore, we show that when reconstituted in vitro, mvUDG, mvAPE, and mvPolX function cohesively to repair a uracil-containing DNA predominantly by long patch BER and together, may participate in the BER pathway during the early phase of Mimivirus life-cycle.  相似文献   

14.
Mimivirus, a parasite of Acanthamoeba polyphaga, is the largest DNA virus known; it encodes dozens of proteins with imputed functions in nucleic acid transactions. Here we produced, purified, and characterized mimivirus DNA topoisomerase IB (TopIB), which we find to be a structural and functional homolog of poxvirus TopIB and the poxvirus-like topoisomerases discovered recently in bacteria. Arginine, histidine, and tyrosine side chains responsible for TopIB transesterification are conserved and essential in mimivirus TopIB. Moreover, mimivirus TopIB is capable of incising duplex DNA at the 5'-CCCTT cleavage site recognized by all poxvirus topoisomerases. Based on the available data, mimivirus TopIB appears functionally more akin to poxvirus TopIB than bacterial TopIB, despite its greater primary structure similarity to the bacterial TopIB group. We speculate that the ancestral bacterial/viral TopIB was disseminated by horizontal gene transfer within amoebae, which are permissive hosts for either intracellular growth or persistence of many present-day bacterial species that have a type IB topoisomerase.  相似文献   

15.
MutS proteins are ubiquitous in cellular organisms and have important roles in DNA mismatch repair or recombination. In the virus world, the amoeba-infecting Mimivirus, as well as the recently sequenced Cafeteria roenbergensis virus are known to encode a MutS related to the homologs found in octocorals and ɛ-proteobacteria. To explore the presence of MutS proteins in other viral genomes, we performed a genomic survey of four giant viruses (‘giruses'') (Pyramimonas orientalis virus (PoV), Phaeocystis pouchetii virus (PpV), Chrysochromulina ericina virus (CeV) and Heterocapsa circularisquama DNA virus (HcDNAV)) that infect unicellular marine algae. Our analysis revealed the presence of a close homolog of Mimivirus MutS in all the analyzed giruses. These viral homologs possess a specific domain structure, including a C-terminal HNH-endonuclease domain, defining the new MutS7 subfamily. We confirmed the presence of conserved mismatch recognition residues in all members of the MutS7 subfamily, suggesting their role in DNA mismatch repair rather than DNA recombination. PoV and PpV were found to contain an additional type of MutS, which we propose to call MutS8. The MutS8 proteins in PoV and PpV were found to be closely related to homologs from ‘Candidatus Amoebophilus asiaticus'', an obligate intracellular amoeba-symbiont belonging to the Bacteroidetes. Furthermore, our analysis revealed that MutS7 and MutS8 are abundant in marine microbial metagenomes and that a vast majority of these environmental sequences are likely of girus origin. Giruses thus seem to represent a major source of the underexplored diversity of the MutS family in the microbial world.  相似文献   

16.
The first viral Nucleoside Diphosphate Kinase was recently identified in the giant double-stranded DNA virus Acanthamoeba polyphag a Mimivirus (ApM). Here we report its expression and detailed biochemical characterization. NDKapm exhibits unique features such as a shorter Kpn-loop, a structural motif previously reported to be part of the active site and involved in oligomer formation. Enzymatic activity measurements on the recombinant NDKapm revealed its preferential affinity for deoxypyrimidine nucleotides. This property might represent an adaptation of NDKapm to the production of the limiting TTP deoxynucleotide required for the replication of the large A+T rich (72%) viral genome. The NDKapm might also assume a role in dUTP detoxification to compensate for the surprising absence of Mimivirus dUTPase (deoxyuridine triphosphate pyrophosphatase) an important enzyme conserved in most viruses. Although the phylogenetic analysis of NDK sequences sampled through organisms from the three domains of life is only partially informative, it favors an ancestral origin for NDKapm over a recent acquisition from a eukaryotic organism by horizontal gene transfer.  相似文献   

17.
Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the “stargate”, allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane–containing viruses.  相似文献   

18.
Acanthamoeba polyphaga mimivirus (APMV) is a giant, double-stranded virus of the Mimiviridae family that was discovered in 2003. Recent studies have shown that this virus is able to replicate in murine and human phagocytes and might be considered a putative human pathogen that causes pneumonia. However, there is little data regarding APMV and its host defense relationship. In the present study, we investigated how some components of the interferon (IFN) system are stimulated by APMV in human peripheral blood mononuclear cells (PBMCs) and how APMV replication is affected by IFN treatment. Our results demonstrated that APMV is able to replicate in human PBMCs, inducing type I Interferons (IFNs) but inhibiting interferon stimulated genes (ISG) induction by viroceptor and STAT-1 and STAT-2 dephosphorylation independent mechanisms. We also showed that APMV is resistant to the antiviral action of interferon-alpha2 (IFNA2) but is sensitive to the antiviral action of interferon-beta (IFNB1). Our results demonstrated the productive infection of professional phagocytes with APMV and showed that this virus is recognized by the immune system of vertebrates and inhibits it. It provides the first data regarding APMV and the IFN system interaction and raise new and relevant evolutional questions about the relationship between APMV and vertebrate hosts.  相似文献   

19.
The discovery of Mimivirus, with its very large genome content, made it possible to identify genes common to the three domains of life (Eukarya, Bacteria and Archaea) and to generate controversial phylogenomic trees congruent with that of ribosomal genes, branching Mimivirus at its root. Here we used sequences from metagenomic databases, Marseillevirus and three new viruses extending the Mimiviridae family to generate the phylogenetic trees of eight proteins involved in different steps of DNA processing. Compared to the three ribosomal defined domains, we report a single common origin for Nucleocytoplasmic Large DNA Viruses (NCLDV), DNA processing genes rooted between Archaea and Eukarya, with a topology congruent with that of the ribosomal tree. As for translation, we found in our new viruses, together with Mimivirus, five proteins rooted deeply in the eukaryotic clade. In addition, comparison of informational genes repertoire based on phyletic pattern analysis supports existence of a clade containing NCLDVs clearly distinct from that of Eukarya, Bacteria and Archaea. We hypothesize that the core genome of NCLDV is as ancient as the three currently accepted domains of life.  相似文献   

20.
Endonuclease VIII (Nei), which recognizes and repairs oxidized pyrimidines in the base excision repair (BER) pathway, is sparsely distributed among both the prokaryotes and eukaryotes. Recently, we and others identified three homologs of Escherichia coli endonuclease VIII-like (NEIL) proteins in humans. Here, we report identification of human NEIL homologs in Mimivirus, a giant DNA virus that infects Acanthamoeba. Characterization of the two mimiviral homologs, MvNei1 and MvNei2, showed that they share not only sequence homology but also substrate specificity with the human NEIL proteins, that is, they recognize oxidized pyrimidines in duplex DNA and in bubble substrates and as well show 5'2-deoxyribose-5-phosphate lyase (dRP lyase) activity. However, unlike MvNei1 and the human NEIL proteins, MvNei2 preferentially cleaves oxidized pyrimidines in single stranded DNA forming products with a different end chemistry. Interestingly, opposite base specificity of MvNei1 resembles human NEIL proteins for pyrimidine base damages whereas it resembles E. coli formamidopyrimidine DNA glycosylase (Fpg) for guanidinohydantoin (Gh), an oxidation product of 8-oxoguanine. Finally, a conserved arginine residue in the "zincless finger" motif, previously identified in human NEIL1, is required for the DNA glycosylase activity of MvNei1. Thus, Mimivirus represents the first example of a virus to carry oxidative DNA glycosylases with substrate specificities that resemble human NEIL proteins. Based on the sequence homology to the human NEIL homologs and novel bacterial NEIL homologs identified here, we predict that Mimivirus may have acquired the DNA glycosylases through the host-mediated lateral transfer from either a bacterium or from vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号