首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of lipid research》2017,58(6):1132-1142
Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or NEFAs. With overnight fasting, kidneys accumulated triglyceride, but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a β adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cluster of differentiation (Cd)36 mRNA increased 2-fold, and angiopoietin-like 4 (Angptl4), an LPL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LPL with poloxamer 407 or by use of mice with induced genetic LPL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter, CD36.  相似文献   

2.
Peroxisome proliferator-activated receptor-α (PPARα) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARα and CP on expression and enzyme activity of kidney lipoprotein lipase (LPL) as well as on expression of angiopoietin protein-like 4 (Angptl4), glycosylphosphatidylinositol-anchored-HDL-binding protein (GPIHBP1), and lipase maturation factor 1 (Lmf1), which are recognized as important proteins that modulate LPL activity. CP caused a 40% reduction in epididymal white adipose tissue (WAT) mass, with a reduction of LPL expression and activity. CP also reduced kidney LPL expression and activity. Angptl4 mRNA levels were increased by ninefold in liver and kidney tissue and by twofold in adipose tissue of CP-treated mice. Western blots of two-dimensional gel electrophoresis identified increased expression of a neutral pI Angptl4 protein in kidney tissue of CP-treated mice. Immunolocalization studies showed reduced staining of LPL and increased staining of Angptl4 primarily in proximal tubules of CP-treated mice. CP also increased TG accumulation in kidney tissue, which was ameliorated by PPARα ligand. In summary, a PPARα ligand ameliorates CP-mediated nephrotoxicity by increasing LPL activity via increased expression of GPHBP1 and Lmf1 and by reducing expression of Angptl4 protein in the proximal tubule.  相似文献   

3.
4.
KK/Snk mice (previously KK/San) possessing a recessive mutation (hypl) of the angiopoietin-like 3 (Angptl3) gene homozygously exhibit a marked reduction of VLDL due to the decreased Angptl3 expression. Recently, we proposed that Angptl3 is a new class of lipid metabolism modulator regulating VLDL triglyceride (TG) levels through the inhibition of lipoprotein lipase (LPL) activity. In this study, to elucidate the role of Angptl3 in atherogenesis, we investigated the effects of hypl mutation against hyperlipidemia and atherosclerosis in apolipoprotein E knockout (apoEKO) mice. ApoEKO mice with hypl mutation (apoEKO-hypl) exhibited a significant reduction of VLDL TG, VLDL cholesterol, and plasma apoB levels compared with apoEKO mice. Hepatic VLDL TG secretion was comparable between both apoE-deficient mice. Turnover studies revealed that the clearance of both [3H]TG-labeled and 125I-labeled VLDL was significantly enhanced in apoEKO-hypl mice. Postprandial plasma TG levels also decreased in apoEKO-hypl mice. Both LPL and hepatic lipase activities in the postheparin plasma increased significantly in apoEKO-hypl mice, explaining the enhanced lipid metabolism. Furthermore, apoEKO-hypl mice developed 3-fold smaller atherogenic lesions in the aortic sinus compared with apoEKO mice. Taken together, the reduction of Angptl3 expression is protective against hyperlipidemia and atherosclerosis, even in the absence of apoE, owing to the enhanced catabolism and clearance of TG-rich lipoproteins.  相似文献   

5.
The VLDL receptor (VLDLr) is involved in tissue delivery of VLDL-triglyceride (TG)-derived FFA by facilitating the expression of lipoprotein lipase (LPL). However, vldlr-/- mice do not show altered plasma lipoprotein levels, despite reduced LPL expression. Because LPL activity is crucial in postprandial lipid metabolism, we investigated whether the VLDLr plays a role in chylomicron clearance. Fed plasma TG levels of vldlr-/- mice were 2.5-fold increased compared with those of vldlr+/+ littermates (1.20 +/- 0.37 mM vs. 0.47 +/- 0.18 mM; P < 0.001). Strikingly, an intragastric fat load led to a 9-fold increased postprandial TG response in vldlr-/- compared with vldlr+/+ mice (226 +/- 188 mM/h vs. 25 +/- 11 mM/h; P < 0.05). Accordingly, the plasma clearance of [3H]TG-labeled protein-free chylomicron-mimicking emulsion particles was delayed in vldlr-/- compared with vldlr+/+ mice (half-life of 12.0 +/- 2.6 min vs. 5.5 +/- 0.9 min; P < 0.05), with a 60% decreased uptake of label into adipose tissue (P < 0.05). VLDLr deficiency did not affect the plasma half-life and adipose tissue uptake of albumin-complexed [14C]FFA, indicating that the VLDLr facilitates postprandial LPL-mediated TG hydrolysis rather than mediating FFA uptake. We conclude that the VLDLr plays a major role in the metabolism of postprandial lipoproteins by enhancing LPL-mediated TG hydrolysis.  相似文献   

6.
Evidence points to a role of the mammalian target of rapamycin (mTOR) signaling pathway as a regulator of adiposity, yet its involvement as a mediator of the positive actions of peroxisome proliferator-activated receptor (PPAR)γ agonism on lipemia, fat accretion, lipid uptake, and its major determinant lipoprotein lipase (LPL) remains to be elucidated. Herein we evaluated the plasma lipid profile, triacylglycerol (TAG) secretion rates, and adipose tissue LPL-dependent lipid uptake, LPL expression/activity, and expression profile of other lipid metabolism genes in rats treated with the PPARγ agonist rosiglitazone (15 mg/kg/day) in combination or not with the mTOR inhibitor rapamycin (2 mg/kg/day) for 15 days. Rosiglitazone stimulated adipose tissue mTOR complex 1 and AMPK and induced TAG-derived lipid uptake (136%), LPL mRNA/activity (2- to 6-fold), and fat accretion in subcutaneous (but not visceral) white adipose tissue (WAT; 50%) and in brown adipose tissue (BAT; 266%). Chronic mTOR inhibition attenuated the upregulation of lipid uptake, LPL expression/activity, and fat accretion induced by PPARγ activation in both subcutaneous WAT and BAT, which resulted in hyperlipidemia. In contrast, rapamycin did not affect most of the other WAT lipogenic genes upregulated by rosiglitazone. Together these findings demonstrate that mTOR is a major regulator of adipose tissue LPL-mediated lipid uptake and a critical mediator of the hypolipidemic and lipogenic actions of PPARγ activation.  相似文献   

7.
Plasma triglyceride concentrations are determined by the balance between production of the triglyceride-rich lipoproteins VLDL and chylomicrons in liver and intestine, and their lipoprotein lipase-mediated clearance in peripheral tissues. In the last decade, the group of Angiopoietin-like proteins has emerged as important regulators of circulating triglyceride (TG) levels. Specifically, ANGPTL3 and ANGPTL4 impair TG clearance by inhibiting lipoprotein lipase (LPL). Whereas ANGPTL4 irreversibly inactivates LPL by promoting conversion of active LPL dimers into inactive monomers, ANGPTL3 reversibly inhibits LPL activity. Studies using transgenic or knockout mice have clearly demonstrated the stimulatory effect of Angptl3 and Angptl4 on plasma TG, which is further supported by human genetic data including genome wide association studies. Whereas ANGPTL3 is mainly active in the fed state, ANGPTL4 is elevated by fasting and mediates fasting-induced changes in plasma TG and free fatty acid metabolism. Both proteins undergo oligomerization and are subject to proteolytic cleavage to generate N- and C-terminal fragments with highly divergent biological activities. Expression of ANGPTL3 is exclusive to liver and governed by the liver X receptor (LXR). In contrast, ANGPTL4 is expressed ubiquitously and under sensitive control of the Peroxisome proliferator-activated receptor (PPAR) family and fatty acids. Induction of ANGPTL4 gene expression by fatty acids and via PPARs is part of a feedback mechanism aimed at protecting cells against lipotoxicity. So far there is very little evidence that other ANGPTLs directly impact plasma lipoprotein metabolism. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.  相似文献   

8.
Previous studies have shown that overexpression of human apolipoprotein C-I (apoC-I) results in moderate hypercholesterolemia and severe hypertriglyceridemia in mice in the presence and absence of apoE. We assessed whether physiological endogenous apoC-I levels are sufficient to modulate plasma lipid levels independently of effects of apoE on lipid metabolism by comparing apolipoprotein E gene-deficient/apolipoprotein C-I gene-deficient (apoe-/-apoc1-/-), apoe-/-apoc1+/-, and apoe-/-apoc1+/+ mice. The presence of the apoC-I gene-dose-dependently increased plasma cholesterol (+45%; P < 0.001) and triglycerides (TGs) (+137%; P < 0.001), both specific for VLDL. Whereas apoC-I did not affect intestinal [3H]TG absorption, it increased the production rate of hepatic VLDL-TG (+35%; P < 0.05) and VLDL-[35S]apoB (+39%; P < 0.01). In addition, apoC-I increased the postprandial TG response to an intragastric olive oil load (+120%; P < 0.05) and decreased the uptake of [3H]TG-derived FFAs from intravenously administered VLDL-like emulsion particles by gonadal and perirenal white adipose tissue (WAT) (-34% and -25%, respectively; P < 0.05). As LPL is the main enzyme involved in the clearance of TG-derived FFAs by WAT, and total postheparin plasma LPL levels were unaffected, these data demonstrate that endogenous apoC-I suffices to attenuate the lipolytic activity of LPL. Thus, we conclude that endogenous plasma apoC-I increases VLDL-total cholesterol and VLDL-TG dose-dependently in apoe-/- mice, resulting from increased VLDL particle production and LPL inhibition.  相似文献   

9.
Angiopoietin-like protein family 4 (Angptl4) has been shown to regulate lipoprotein metabolism through the inhibition of lipoprotein lipase (LPL). In familial hypercholesterolemia (FH), individuals lacking low-density lipoprotein receptor (LDLR) present not only hypercholesterolemia, but also increased plasma triglyceride (TG)-rich lipoprotein remnants, and develop atherosclerosis. In addition, the most common type of dyslipidemia in individuals with diabetes is increased TG levels.We first generated LDLR−/−Angptl4−/− mice to study the effect of Angptl4 deficiency on the lipid metabolism. Fasting total cholesterol, VLDL-C, LDL-C, HDL-C and TG levels were decreased in LDLR−/−Angptl4−/− mice compared with LDLR−/−Angptl4+/+ mice. In particular, post olive oil-loaded TG excursion were largely attenuated in LDLR−/−Angptl4−/− mice compared with LDLR−/−Angptl4+/+ mice. We next introduced diabetes by streptozotocin (STZ) treatment in Angptl4−/− mice and examined the impacts of Angptl4 deficiency. Compared with diabetic Angptl4+/+ mice, diabetic Angptl4−/− mice showed the improvement of fasting and postprandial hypertriglyceridemia as well. Thus, targeted silencing of Angptl4 offers a potential therapeutic strategy for the treatment of dyslipidemia in individuals with FH and insulin deficient diabetes.  相似文献   

10.
Angiopoietin-like protein 3 (ANGPTL3) is a circulating protein synthesized exclusively in the liver that inhibits LPL and endothelial lipase (EL), enzymes that hydrolyze TGs and phospholipids in plasma lipoproteins. Here we describe the development and testing of a fully human monoclonal antibody (REGN1500) that binds ANGPTL3 with high affinity. REGN1500 reversed ANGPTL3-induced inhibition of LPL activity in vitro. Intravenous administration of REGN1500 to normolipidemic C57Bl/6 mice increased LPL activity and decreased plasma TG levels by ≥50%. Chronic administration of REGN1500 to dyslipidemic C57Bl/6 mice for 8 weeks reduced circulating plasma levels of TG, LDL-cholesterol (LDL-C), and HDL-cholesterol (HDL-C) without any changes in liver, adipose, or heart TG contents. Studies in EL knockout mice revealed that REGN1500 reduced serum HDL-C through an EL-dependent mechanism. Finally, administration of a single dose of REGN1500 to dyslipidemic cynomolgus monkeys caused a rapid and pronounced decrease in plasma TG, nonHDL-C, and HDL-C. REGN1500 normalized plasma TG levels even in monkeys with a baseline plasma TG greater than 400 mg/dl. Collectively, these data demonstrate that neutralization of ANGPTL3 using REGN1500 reduces plasma lipids in dyslipidemic mice and monkeys, and thus provides a potential therapeutic agent for treatment of patients with hyperlipidemia.  相似文献   

11.
脂蛋白酯酶与动脉粥样硬化   总被引:3,自引:0,他引:3  
脂蛋白酯酶(1ipopmtein lipase,LPL)是调节脂蛋白代谢的一种关键酶,如具有水解血浆脂蛋白中三酰甘油的作用等.体内LPL减少会导致血三酰甘油升高和高密度脂蛋白胆固醇降低,增加患动脉粥样硬化的危险.通过提高LPL的活性可以抑制动脉粥样硬化的发生发展.已有的研究说明NO-1886促进心肌和脂肪组织LPL mRNA表达,提高心肌、脂肪组织、骨骼肌和血液中LPL活性,因而改善脂蛋白代谢,抑制动脉粥样硬化.  相似文献   

12.
KK/San is a mutant mouse strain established in our laboratory from KK obese mice. KK/San mice show low plasma lipid levels compared with wild-type KK mice despite showing signs of hyperglycemia and hyperinsulinemia. Recently, we identified a mutation in the gene encoding angiopoietin-like protein 3 (Angptl3) in KK/San mice, and injection of adenoviruses encoding Angptl3 or recombinant ANGPTL3 protein to mutant KK/San mice raised plasma lipid levels. To elucidate the regulatory mechanism of ANGPTL3 on lipid metabolism, we focused on the metabolic pathways of triglyceride in the present study. Overexpression of Angptl3 in KK/San mice resulted in a marked increase of triglyceride-enriched very low density lipoprotein (VLDL). In vivo studies using Triton WR1339 revealed that there is no significant difference between mutant and wild-type KK mice in the hepatic VLDL triglyceride secretion rate. However, turnover studies using radiolabeled VLDL revealed that the clearance of (3)H-triglyceride-labeled VLDL was significantly enhanced in KK/San mice, whereas the clearance of (125)I-labeled VLDL was only slightly enhanced. In vitro analysis of recombinant protein revealed that ANGPTL3 directly inhibits LPL activity. These data strongly support the hypothesis that ANGPTL3 is a new class of lipid metabolism modulator, which regulates VLDL triglyceride levels through the inhibition of LPL activity.  相似文献   

13.
The obesity epidemic is associated with an increased incidence of type 2 diabetes, cardiovascular morbidity and various types of cancer. A better insight into the molecular mechanisms that underlie adipogenesis and obesity may result in novel therapeutic handles to fight obesity and these associated diseases. Adipogenesis is determined by the balance between uptake of fatty acids (FA) from plasma into adipocytes, intracellular FA oxidation versus esterification of FA into triglycerides (TG), lipolysis of TG by intracellular lipases, and secretion of FA from adipocytes. Here, we review the mechanisms that are specifically involved in the entry of FA into adipose tissue. In plasma, these originating FA are either present as TG within apoB-containing lipoproteins (i.e. chylomicrons and VLDL) or as free FA bound to albumin. Kinetic studies, however, have revealed that TG are the major source of FA entering adipose tissue, both in the fed and fasted condition. In fact, studies with genetically engineered mice have revealed that the activity of lipoprotein lipase (LPL) is a major determinant for the development of obesity. As a general rule, high fat diet-induced adipogenesis is aggravated by stimulated LPL activity (e.g. by adipose tissue-specific overexpression of LPL or deficiency for apoCIII), and attenuated by inhibited LPL activity (e.g. by adipose-specific deficiency for LPL, overexpression of apoCI or angptl4, or by deficiency for apoE or the VLDL receptor). In addition, we describe that the trans-membrane transport of FA and cytoplasmic binding of FA in adipocytes can also dramatically affect adipogenesis. The relevance of these findings for human pathophysiology is discussed.  相似文献   

14.
Angiopoietin-like 3 (ANGPTL3) is a secreted protein with both angiogenesis and lipid metabolism functions. We generated knockout mice that failed to express the Angptl3 gene, and analyzed the lipid metabolism. Angptl3-null mice, fed a normal diet or a high-fat, high-calorie (HFC) diet, revealed markedly low plasma lipid concentrations, especially plasma triglyceride concentration, although the body weight and liver weight were not different between Angptl3-null mice and wild-type mice. Angptl3-null mice fed an HFC diet also revealed a significantly reduced epididymal adipose tissue weight despite there being no difference in adipocyte size between them and wild-type mice. A triglyceride clearance study indicated that the lower plasma triglyceride concentration in Angptl3-null mice was caused by an accelerated clearance of triglyceride. In fact, lipoprotein lipase and hepatic lipase activities in the post-heparin plasma of Angptl3-null mice were 1.57 times and 1.42 times higher than those of wild-type mice, respectively. These results suggest that ANGPTL3 may have an effect not only on lipid metabolism but also on adipose formation.  相似文献   

15.
Angiopoietin-like protein family 4 (Angptl 4) has been shown to regulate lipoprotein metabolism through the inhibition of lipoprotein lipase (LPL). We generated ApoE−/−Angptl 4−/− mice to study the effect of Angptl 4 deficiency on lipid metabolism and atherosclerosis. Fasting and postolive oil-loaded triglyceride (TG) levels were largely decreased in ApoE−/−Angptl 4−/− mice compared with and ApoE−/−Angptl 4+/+ mice. There was a significant (75 ± 12%) reduction in atherosclerotic lesion size in ApoE−/−Angptl 4−/− mice compared with ApoE−/− Angptl 4+/+ mice. Peritoneal macrophages, isolated from Angptl 4−/− mice to investigate the foam cell formation, showed a significant decrease in newly synthesized cholesteryl ester (CE) accumulation induced by acetyl low-density lipoprotein (acLDL) compared with those from Angptl 4+/+ mice. Thus, genetic knockout of Angptl 4 protects ApoE−/− mice against development and progression of atherosclerosis and strongly suppresses the ability of the macrophages to become foam cells in vitro.  相似文献   

16.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonism potently reduces circulating triglycerides (TG) in rodents and more modestly so in humans. This study aimed to quantify in vivo the relative contribution of hepatic VLDL-TG secretion and tissue-specific TG clearance to such action. Rats were fed an obesogenic diet, treated with the PPARgamma full agonist COOH (30 mg.kg(-1).day(-1)) for 3 wk, and studied in both the fasted and refed (fat-free) states. Hepatic VLDL-TG secretion rate was not affected by chronic COOH in the fasted state and was only modestly decreased (-30%) in refed rats. In contrast, postprandial VLDL-TG clearance was increased 2.6-fold by COOH, which concomitantly stimulated adipose tissue TG-derived lipid uptake and one of its major determinants, lipoprotein lipase (LPL) activity, in a highly depot-specific manner. TG-derived lipid uptake and LPL were indeed strongly increased in subcutaneous inguinal white adipose tissue and in brown adipose tissue, independently of the nutritional state, whereas of the three visceral fat depots examined (epididymal, retroperitoneal, mesenteric) only the latter responded consistently to COOH. Robust correlations (0.5 < r < 0.9) were observed between TG-derived lipid uptake and LPL in adipose tissues. The agonist did not increase LPL in muscle, and its enhancing action on postprandial muscle lipid uptake appeared to be mediated by post-LPL processes involving increased expression of fatty acid binding/transport proteins (aP2, likely in infiltrated adipocytes, FAT/CD36, and FATP-1). The study establishes in a diet-induced obesity model the major contribution of lipid uptake by specific, metabolically safe adipose depots to the postprandial hypotriglyceridemic action of PPARgamma agonism, and suggests a key role for LPL therein.  相似文献   

17.
《Journal of lipid research》2017,58(6):1166-1173
Angiopoietin-like (ANGPTL)3 and ANGPTL8 are secreted proteins and inhibitors of LPL-mediated plasma triglyceride (TG) clearance. It is unclear how these two ANGPTL proteins interact to regulate LPL activity. ANGPTL3 inhibits LPL activity and increases serum TG independent of ANGPTL8. These effects are reversed with an ANGPTL3 blocking antibody. Here, we show that ANGPTL8, although it possesses a functional inhibitory motif, is inactive by itself and requires ANGPTL3 expression to inhibit LPL and increase plasma TG. Using a mutated form of ANGPTL3 that lacks LPL inhibitory activity, we demonstrate that ANGPTL3 activity is not required for its ability to activate ANGPTL8. Moreover, coexpression of ANGPTL3 and ANGPTL8 leads to a far more efficacious increase in TG in mice than ANGPTL3 alone, suggesting the major inhibitory activity of this complex derives from ANGPTL8. An antibody to the C terminus of ANGPTL8 reversed LPL inhibition by ANGPTL8 in the presence of ANGPTL3. The antibody did not disrupt the ANGPTL8:ANGPTL3 complex, but came in close proximity to the LPL inhibitory motif in the N terminus of ANGPTL8. Collectively, these data show that ANGPTL8 has a functional LPL inhibitory motif, but only inhibits LPL and increases plasma TG levels in mice in the presence of ANGPTL3.  相似文献   

18.
The peroxisome proliferator-activated receptor alpha (PPARα) activator fenofibrate efficiently decreases plasma triglycerides (TG), which is generally attributed to enhanced very low density lipoprotein (VLDL)-TG clearance and decreased VLDL-TG production. However, because data on the effect of fenofibrate on VLDL production are controversial, we aimed to investigate in (more) detail the mechanism underlying the TG-lowering effect by studying VLDL-TG production and clearance using APOE*3-Leiden.CETP mice, a unique mouse model for human-like lipoprotein metabolism. Male mice were fed a Western-type diet for 4 weeks, followed by the same diet without or with fenofibrate (30 mg/kg bodyweight/day) for 4 weeks. Fenofibrate strongly lowered plasma cholesterol (−38%) and TG (−60%) caused by reduction of VLDL. Fenofibrate markedly accelerated VLDL-TG clearance, as judged from a reduced plasma half-life of glycerol tri[3H]oleate-labeled VLDL-like emulsion particles (−68%). This was associated with an increased post-heparin lipoprotein lipase (LPL) activity (+110%) and an increased uptake of VLDL-derived fatty acids by skeletal muscle, white adipose tissue, and liver. Concomitantly, fenofibrate markedly increased the VLDL-TG production rate (+73%) but not the VLDL-apolipoprotein B (apoB) production rate. Kinetic studies using [3H]palmitic acid showed that fenofibrate increased VLDL-TG production by equally increasing incorporation of re-esterified plasma fatty acids and liver TG into VLDL, which was supported by hepatic gene expression profiling data. We conclude that fenofibrate decreases plasma TG by enhancing LPL-mediated VLDL-TG clearance, which results in a compensatory increase in VLDL-TG production by the liver.  相似文献   

19.
Brown adipose tissue (BAT) burns fatty acids for heat production to defend the body against cold and has recently been shown to be present in humans. Triglyceride-rich lipoproteins (TRLs) transport lipids in the bloodstream, where the fatty acid moieties are liberated by the action of lipoprotein lipase (LPL). Peripheral organs such as muscle and adipose tissue take up the fatty acids, whereas the remaining cholesterol-rich remnant particles are cleared by the liver. Elevated plasma triglyceride concentrations and prolonged circulation of cholesterol-rich remnants, especially in diabetic dyslipidemia, are risk factors for cardiovascular disease. However, the precise biological role of BAT for TRL clearance remains unclear. Here we show that increased BAT activity induced by short-term cold exposure controls TRL metabolism in mice. Cold exposure drastically accelerated plasma clearance of triglycerides as a result of increased uptake into BAT, a process crucially dependent on local LPL activity and transmembrane receptor CD36. In pathophysiological settings, cold exposure corrected hyperlipidemia and improved deleterious effects of insulin resistance. In conclusion, BAT activity controls vascular lipoprotein homeostasis by inducing a metabolic program that boosts TRL turnover and channels lipids into BAT. Activation of BAT might be a therapeutic approach to reduce elevated triglyceride concentrations and combat obesity in humans.  相似文献   

20.
Acylation-stimulating protein (ASP) increases triglyceride (TG) storage (fatty acid trapping) in adipose tissue and plays an important role in postprandial TG clearance. We examined the capacity of ASP and insulin to stimulate the activity of lipoprotein lipase (LPL) and the trapping of LPL-derived nonesterified fatty acid (NEFA) in 3T3-L1 adipocytes. Although insulin increased total LPL activity (secreted and cell-associated; P < 0.001) in 3T3-L1 adipocytes, ASP moderately stimulated secreted LPL activity (P = 0.04; 5% of total LPL activity). Neither hormone increased LPL translocation from adipocytes to endothelial cells in a coculture system. However, ASP and insulin increased the V(max) of in situ LPL activity ([(3)H]TG synthetic lipoprotein hydrolysis and [(3)H]NEFA incorporation into adipocytes) by 60% and 41%, respectively (P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号