首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ζ subunit is a novel inhibitor of the F1FO-ATPase of Paracoccus denitrificans and related α-proteobacteria. It is different from the bacterial (ϵ) and mitochondrial (IF1) inhibitors. The N terminus of ζ blocks rotation of the γ subunit of the F1-ATPase of P. denitrificans (Zarco-Zavala, M., Morales-Ríos, E., Mendoza-Hernández, G., Ramírez-Silva, L., Pérez-Hernández, G., and García-Trejo, J. J. (2014) FASEB J. 24, 599–608) by a hitherto unknown quaternary structure that was first modeled here by structural homology and protein docking. The F1-ATPase and F1-ζ models of P. denitrificans were supported by cross-linking, limited proteolysis, mass spectrometry, and functional data. The final models show that ζ enters into F1-ATPase at the open catalytic αEE interface, and two partial γ rotations lock the N terminus of ζ in an “inhibition-general core region,” blocking further γ rotation, while the ζ globular domain anchors it to the closed αDPDP interface. Heterologous inhibition of the F1-ATPase of P. denitrificans by the mitochondrial IF1 supported both the modeled ζ binding site at the αDPDP/γ interface and the endosymbiotic α-proteobacterial origin of mitochondria. In summary, the ζ subunit blocks the intrinsic rotation of the nanomotor by inserting its N-terminal inhibitory domain at the same rotor/stator interface where the mitochondrial IF1 or the bacterial ϵ binds. The proposed pawl mechanism is coupled to the rotation of the central γ subunit working as a ratchet but with structural differences that make it a unique control mechanism of the nanomotor to favor the ATP synthase activity over the ATPase turnover in the α-proteobacteria.  相似文献   

2.
The F1c10 subcomplex of the yeast F1F0-ATP synthase includes the membrane rotor part c10-ring linked to a catalytic head, (αβ)3, by a central stalk, γδϵ. The Saccharomyces cerevisiae yF1c10·ADP subcomplex was crystallized in the presence of Mg·ADP, dicyclohexylcarbodiimide (DCCD), and azide. The structure was solved by molecular replacement using a high resolution model of the yeast F1 and a bacterial c-ring model with 10 copies of the c-subunit. The structure refined to 3.43-Å resolution displays new features compared with the original yF1c10 and with the yF1 inhibited by adenylyl imidodiphosphate (AMP-PNP) (yF1(I–III)). An ADP molecule was bound in both βDP and βTP catalytic sites. The αDPDP pair is slightly open and resembles the novel conformation identified in yF1, whereas the αTPTP pair is very closed and resembles more a DP pair. yF1c10·ADP provides a model of a new Mg·ADP-inhibited state of the yeast F1. As for the original yF1 and yF1c10 structures, the foot of the central stalk is rotated by ∼40 ° with respect to bovine structures. The assembly of the F1 central stalk with the F0 c-ring rotor is mainly provided by electrostatic interactions. On the rotor ring, the essential cGlu59 carboxylate group is surrounded by hydrophobic residues and is not involved in hydrogen bonding.  相似文献   

3.
The mitochondrial ATP synthase couples the flow of protons with the phosphorylation of ADP. A class of mutations, the mitochondrial genome integrity (mgi) mutations, has been shown to uncouple this process in the yeast mitochondrial ATP synthase. Four mutant forms of the yeast F1 ATPase with mgi mutations were crystallized; the structures were solved and analyzed. The analysis identifies two mechanisms of structural uncoupling: one in which the empty catalytic site is altered and in doing so, apparently disrupts substrate (phosphate) binding, and a second where the steric hindrance predicted between γLeu83 and βDP residues, Leu-391 and Glu-395, located in Catch 2 region, is reduced allowing rotation of the γ-subunit with less impedance. Overall, the structures provide key insights into the critical interactions in the yeast ATP synthase involved in the coupling process.  相似文献   

4.
We showed previously that active PKC-α maintains F0F1-ATPase activity, whereas inactive PKC-α mutant (dnPKC-α) blocks recovery of F0F1-ATPase activity after injury in renal proximal tubules (RPTC). This study tested whether mitochondrial PKC-α interacts with and phosphorylates F0F1-ATPase. Wild-type PKC-α (wtPKC-α) and dnPKC-α were overexpressed in RPTC to increase their mitochondrial levels, and RPTC were exposed to oxidant or hypoxia. Mitochondrial levels of the γ-subunit, but not the α- and β-subunits, were decreased by injury, an event associated with 54% inhibition of F0F1-ATPase activity. Overexpressing wtPKC-α blocked decreases in γ-subunit levels, maintained F0F1-ATPase activity, and improved ATP levels after injury. Deletion of PKC-α decreased levels of α-, β-, and γ-subunits, decreased F0F1-ATPase activity, and hindered the recovery of ATP content after RPTC injury. Mitochondrial PKC-α co-immunoprecipitated with α-, β-, and γ-subunits of F0F1-ATPase. The association of PKC-α with these subunits decreased in injured RPTC overexpressing dnPKC-α. Immunocapture of F0F1-ATPase and immunoblotting with phospho(Ser) PKC substrate antibody identified phosphorylation of serine in the PKC consensus site on the α- or β- and γ-subunits. Overexpressing wtPKC-α increased phosphorylation and protein levels, whereas deletion of PKC-α decreased protein levels of α-, β-, and γ-subunits of F0F1-ATPase in RPTC. Phosphoproteomics revealed phosphorylation of Ser146 on the γ subunit in response to wtPKC-α overexpression. We concluded that active PKC-α 1) prevents injury-induced decreases in levels of γ subunit of F0F1-ATPase, 2) interacts with α-, β-, and γ-subunits leading to increases in their phosphorylation, and 3) promotes the recovery of F0F1-ATPase activity and ATP content after injury in RPTC.  相似文献   

5.
In the structure of bovine F1-ATPase inhibited with residues 1-60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme.  相似文献   

6.
The bioenergetics of IF1 transiently silenced cancer cells has been extensively investigated, but the role of IF1 (the natural inhibitor protein of F1F0-ATPase) in cancer cell metabolism is still uncertain. To shed light on this issue, we established a method to prepare stably IF1-silenced human osteosarcoma clones and explored the bioenergetics of IF1 null cancer cells. We showed that IF1-silenced cells proliferate normally, consume glucose, and release lactate as controls do, and contain a normal steady-state ATP level. However, IF1-silenced cells displayed an enhanced steady-state mitochondrial membrane potential and consistently showed a reduced ADP-stimulated respiration rate. In the parental cells (i.e. control cells containing IF1) the inhibitor protein was found to be associated with the dimeric form of the ATP synthase complex, therefore we propose that the interaction of IF1 with the complex either directly, by increasing the catalytic activity of the enzyme, or indirectly, by improving the structure of mitochondrial cristae, can increase the oxidative phosphorylation rate in osteosarcoma cells grown under normoxic conditions.  相似文献   

7.
The crystal structures of the nucleotide-empty (AE), 5′-adenylyl-β,γ-imidodiphosphate (APNP)-bound, and ADP (ADP)-bound forms of the catalytic A subunit of the energy producer A1AO ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 Å and 2.4 Å resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the AE form, the phosphate analog SO42− binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5′-adenylyl-β,γ-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-Å structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic β subunits of F1FO ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A1AO ATP synthases, F1FO ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.  相似文献   

8.
F1-ATPase is a rotary molecular motor in which the central γ-subunit rotates inside a cylinder made of α3β3-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the β-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question. Here we inquire whether F1 rotates at extremely low ATP concentrations where the site occupancy is expected to be low. We observed under an optical microscope rotation of individual F1 molecules that carried a bead duplex on the γ-subunit. Time-averaged rotation rate was proportional to the ATP concentration down to 200 pM, giving an apparent rate constant for ATP binding of 2 × 107 M−1s−1. A similar rate constant characterized bulk ATP hydrolysis in solution, which obeyed a simple Michaelis-Menten scheme between 6 mM and 60 nM ATP. F1 produced the same torque of ~40 pN·nm at 2 mM, 60 nM, and 2 nM ATP. These results point to one rotary mechanism governing the entire range of nanomolar to millimolar ATP, although a switchover between two mechanisms cannot be dismissed. Below 1 nM ATP, we observed less regular rotations, indicative of the appearance of another reaction scheme.  相似文献   

9.
The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic β-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the β-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the β-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.  相似文献   

10.
F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ϵ, which partially inserts into the enzyme''s central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·ϵ binding and dissociation, we show that formation of the extended, inhibitory conformation of ϵ (ϵX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the ϵX state, and post-hydrolysis conditions stabilize it. We also show that ϵ inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ϵ is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ϵ N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ϵ suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.  相似文献   

11.
In Caenorhabditis elegans, two proteins that are similar to mitochondrial ATPase inhibitor protein (IF1) have been found and named MAI-1 and MAI-2. In this study, we overexpressed and purified both the proteins and examined their properties. Circular dichroism spectra indicated that both the MAI-1 and MAI-2 predominantly consisted of β- and random structure, and in contrast to mammalian IF1, α-helixes were barely detected. Both MAI-1 and MAI-2 could inhibit yeast F0F1-ATPase, but the inhibition by MAI-1 was pH-independent. MAI-2-GFP fusion protein was transported to yeast mitochondria, but MAI-1-GFP was not. These results indicate that the MAI-2 is C. elegans IF1. MAI-1 seems to be a cytosolic protein and may regulate cytosolic ATPase(s).  相似文献   

12.
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a βY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a βE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric βY341W subunit and a mutant α3β3γ subcomplex containing the βY341W mutation with or without an additional βE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated β subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van’t Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated β subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH0 and ΔG0 values at 25°C. The binding of nucleotides with different bases to the isolated β subunit resulted in different entropy changes. Interestingly, NDP binding to the α3β(Y341W)3γ subcomplex had similar Kd and ΔG0 values as binding to the isolated β(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.  相似文献   

13.
The mitochondrial F1-ATPase inhibitor protein, IF1, inhibits the hydrolytic, but not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of ATP to form the inhibited complex. In this complex, the α-helical inhibitory region of the bound IF1 occupies a deep cleft in one of the three catalytic interfaces of the enzyme. Its N-terminal region penetrates into the central aqueous cavity of the enzyme and interacts with the γ-subunit in the enzyme''s rotor. The intricacy of forming this complex and the binding mode of the inhibitor endow IF1 with high specificity. This property has been exploited in the development of a highly selective affinity procedure for purifying the intact F-ATP synthase complex from mitochondria in a single chromatographic step by using inhibitor proteins with a C-terminal affinity tag. The inhibited complex was recovered with residues 1–60 of bovine IF1 with a C-terminal green fluorescent protein followed by a His-tag, and the active enzyme with the same inhibitor with a C-terminal glutathione-S-transferase domain. The wide applicability of the procedure has been demonstrated by purifying the enzyme complex from bovine, ovine, porcine and yeast mitochondria. The subunit compositions of these complexes have been characterized. The catalytic properties of the bovine enzyme have been studied in detail. Its hydrolytic activity is sensitive to inhibition by oligomycin, and the enzyme is capable of synthesizing ATP in vesicles in which the proton-motive force is generated from light by bacteriorhodopsin. The coupled enzyme has been compared by limited trypsinolysis with uncoupled enzyme prepared by affinity chromatography. In the uncoupled enzyme, subunits of the enzyme''s stator are degraded more rapidly than in the coupled enzyme, indicating that uncoupling involves significant structural changes in the stator region.  相似文献   

14.
The α subunit of the F1-ATPase complex of maize is a mitochondrial translational product, presumably encoded by the mitochondrial genome. Based on nucleotide and amino acid homology, we have identified a mitochondrial gene, designated atpα, that appears to code for the F1-ATPase α subunit of Zea mays. The atpα gene is present as a single copy in the maize. Texas cytoplasm and is actively transcribed. The maize α polypeptide has a predicted length of 508 amino acids and a molecular mass of 55,187 daltons. Amino acid homologies between the maize mitochondrial α subunit and the tobacco chloroplast CF1 and Escherichia coli α subunits are 54 and 51%, respectively. The origin of the atpα gene is discussed.  相似文献   

15.
Mitochondrial structure has a central role both in energy conversion and in the regulation of cell death. We have previously shown that IF1 protects cells from necrotic cell death and supports cristae structure by promoting the oligomerisation of the F1Fo-ATPsynthase. As IF1 is upregulated in a large proportion of human cancers, we have here explored its contribution to the progression of apoptosis and report that an increased expression of IF1, relative to the F1Fo-ATPsynthase, protects cells from apoptotic death. We show that IF1 expression serves as a checkpoint for the release of Cytochrome c (Cyt c) and hence the completion of the apoptotic program. We show that the progression of apoptosis engages an amplification pathway mediated by: (i) Cyt c-dependent release of ER Ca2+, (ii) Ca2+-dependent recruitment of the GTPase Dynamin-related protein 1 (Drp1), (iii) Bax insertion into the outer mitochondrial membrane and (iv) further release of Cyt c. This pathway is accelerated by suppression of IF1 and delayed by its overexpression. IF1 overexpression is associated with the preservation of mitochondrial morphology and ultrastructure, consistent with a central role for IF1 as a determinant of the inner membrane architecture and with the role of mitochondrial ultrastructure in the regulation of Cyt c release. These data suggest that IF1 is an antiapoptotic and potentially tumorigenic factor and may be a valuable predictor of responsiveness to chemotherapy.  相似文献   

16.
The ATP synthase is a ubiquitous nanomotor that fuels life by the synthesis of the chemical energy of ATP. In order to synthesize ATP, this enzyme is capable of rotating its central rotor in a reversible manner. In the clockwise (CW) direction, it functions as ATP synthase, while in counter clockwise (CCW) sense it functions as an proton pumping ATPase. In bacteria and mitochondria, there are two known canonical natural inhibitor proteins, namely the ε and IF1 subunits. These proteins regulate the CCW F1FO-ATPase activity by blocking γ subunit rotation at the αDPDP/γ subunit interface in the F1 domain. Recently, we discovered a unique natural F1-ATPase inhibitor in Paracoccus denitrificans and related α-proteobacteria denoted the ζ subunit. Here, we compare the functional and structural mechanisms of ε, IF1, and ζ, and using the current data in the field, it is evident that all three regulatory proteins interact with the αDPDP/γ interface of the F1-ATPase. In order to exert inhibition, IF1 and ζ contain an intrinsically disordered N-terminal protein region (IDPr) that folds into an α-helix when inserted in the αDPDP/γ interface. In this context, we revised here the mechanism and role of the ζ subunit as a unidirectional F-ATPase inhibitor blocking exclusively the CCW F1FO-ATPase rotation, without affecting the CW-F1FO-ATP synthase turnover. In summary, the ζ subunit has a mode of action similar to mitochondrial IF1, but in α-proteobacteria. The structural and functional implications of these intrinsically disordered ζ and IF1 inhibitors are discussed to shed light on the control mechanisms of the ATP synthase nanomotor from an evolutionary perspective.  相似文献   

17.
Members of the P4 subfamily of P-type ATPases are believed to catalyze flipping of phospholipids across cellular membranes, in this way contributing to vesicle biogenesis in the secretory and endocytic pathways. P4-ATPases form heteromeric complexes with Cdc50-like proteins, and it has been suggested that these act as β-subunits in the P4-ATPase transport machinery. In this work, we investigated the role of Cdc50-like β-subunits of P4-ATPases for targeting and function of P4-ATPase catalytic α-subunits. We show that the Arabidopsis P4-ATPases ALA2 and ALA3 gain functionality when coexpressed with any of three different ALIS Cdc50-like β-subunits. However, the final cellular destination of P4-ATPases as well as their lipid substrate specificity are independent of the nature of the ALIS β-subunit they were allowed to interact with.  相似文献   

18.
The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF1 subunits, prevent the wasteful CCW F1FO-ATPase activity by blocking γ rotation at the αDPDP/γ interface of the F1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F1-ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF1, it also binds to the αDPDP/γ interface of the F1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the αDPDP/γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F1FO-ATPase rotation without affecting the CW-F1FO-ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as a unidirectional pawl-ratchet PdF1FO-ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is a useful model that mimics mitochondrial IF1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF1) of this unique ATP synthase nanomotor, essential for life.  相似文献   

19.
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30–40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α3β3γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855–865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ϵ inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ϵ inhibition.  相似文献   

20.
Synthesis of adenosine triphosphate (ATP) by the F1F0 ATP synthase involves a membrane-embedded rotary engine, the F0 domain, which drives the extra-membranous catalytic F1 domain. The F0 domain consists of subunits a1b2 and a cylindrical rotor assembled from 9–14 α-helical hairpin-shaped c-subunits. According to structural analyses, rotors contain 10 c-subunits in yeast and 14 in chloroplast ATP synthases. We determined the rotor stoichiometry of Ilyobacter tartaricus ATP synthase by atomic force microscopy and cryo-electron microscopy, and show the cylindrical sodium-driven rotor to comprise 11 c-subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号