首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

With a wide range of applications, titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities. Recently, in the field of nanomedicine, intravenous injection of TiO2 nanoparticulate carriers directly into the bloodstream has raised public concerns on their toxicity to humans.

Methods

In this study, mice were injected intravenously with a single dose of TiO2 NPs at varying dose levels (0, 140, 300, 645, or 1387 mg/kg). Animal mortality, blood biochemistry, hematology, genotoxicity and histopathology were investigated 14 days after treatment.

Results

Death of mice in the highest dose (1387 mg/kg) group was observed at day two after TiO2 NPs injection. At day 7, acute toxicity symptoms, such as decreased physical activity and decreased intake of food and water, were observed in the highest dose group. Hematological analysis and the micronucleus test showed no significant acute hematological or genetic toxicity except an increase in the white blood cell (WBC) count among mice 645 mg/kg dose group. However, the spleen of the mice showed significantly higher tissue weight/body weight (BW) coefficients, and lower liver and kidney coefficients in the TiO2 NPs treated mice compared to control. The biochemical parameters and histological tissue sections indicated that TiO2 NPs treatment could induce different degrees of damage in the brain, lung, spleen, liver and kidneys. However, no pathological effects were observed in the heart in TiO2 NPs treated mice.

Conclusions

Intravenous injection of TiO2 NPs at high doses in mice could cause acute toxicity effects in the brain, lung, spleen, liver, and kidney. No significant hematological or genetic toxicity was observed.  相似文献   

2.

Background

Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers.

Methods and Findings

Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers.

Conclusions

FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve the safety of candidate medications selected for testing in human participants. Please see later in the article for the Editors'' Summary  相似文献   

3.
Acute and sub-acute toxicity of ethanolic extract (ETE) of C. mannii was assessed on white mice (Mus musculus). After 48 h of extract administration, no death was registered. It was deduced that the LD50 was indisputably higher than 16 g/kg body weight. The sub-acute toxicity test was based on the daily administration of three doses of ETE (300, 600 and 1200 mg/kg body weight) for four weeks; 1% DMSO served as negative control. As for the first experiment, no sign of toxicity was registered. Conversely, the sub acute doses stimulated and increased the weight-rate of mice after 7 days of treatment. Except for the spleen weight, the doses administrated did not modify the weight index. It was observed that, subacute doses induced and increased (a) the food (particularly) and water consumption according to time and (b) the number of red and white blood cells. It was thought that, ETE can stimulate the haematopoietic function. Finally, no time variation of the activity of alanine aminotransferase and aspartate aminotransferase enzyme was observed in the serum of euthanized mice. The results showed the innocuity of ETE of C. mannii and thus validated his utilization in cameroonian traditional pharmacopoea.  相似文献   

4.
In acute toxicity study, rats showed dose-dependent signs of cholinergic hyperactivity and behavioural alterations. Maximum intensity of symptoms was not associated with mortality. Oral LD50 was 1681 mg/kg. In subacute toxicity study, rats were orally administered 50, 100 or 200 mg/kg of anilofos once daily for 28 days. Signs and symptoms were observed mainly with 200mg/kg. At this dose, anilofos induced hypothermia and progressive weight loss. None of the anilofos-treated rats died. Weight of brain, lung, testis was not altered, while of liver, heart, spleen and kidney increased. Anilofos inhibited cholinesterase (ChE) activities of erythrocyte (41-67%), plasma (36%), blood (37-64%), brain (63-73%) and liver (28-48%). Total protein was decreased in plasma and liver. Results indicate moderate toxic potential of anilofos in mammals, substantial contribution of CNS-mediated effects in causing anilofos toxicity and no direct relationship between hypothermia and level of ChE inhibition.  相似文献   

5.
Lu XX  Wang SQ  Zhang Z  Xu HR  Liu B  Huangfu CS 《生理学报》2012,64(3):313-320
The purpose of the present study was to investigate the effect of sodium nitrite (SN) on alcohol-induced acute liver injury in mice. Forty male C57bL/6 mice were randomly divided into 4 groups. Acute alcohol-induced liver injury group were injected intraperitoneal (ip) with alcohol (4.5 g/kg); SN preconditioning group were pretreated with SN (16 mg/kg, ip) for 12 h, and received alcohol (4.5 g/kg, ip) injection; Control and SN groups were treated with saline and SN, respectively. After the treatments, liver index (liver/body weight ratio) was determined. Colorimetric technique was performed to measure the serum alanine transaminase (ALT), aspartate transaminase (AST), liver superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activities, as well as malondialdehyde (MDA) content. The pathological index of liver tissue was assayed by HE and TUNEL fluorometric staining. Using Western blot and immunohistochemistry staining, the expression of hypoxia-inducible factor-1α (HIF-1α) protein was detected. The results showed that, compared with acute alcohol-induced liver injury group, pretreatment with low doses of SN decreased liver index and serum levels of ALT and AST, weakened acute alcohol-induced hepatocyte necrosis, improved pathological changes in liver tissue, increased live tissue SOD, GSH-Px and CAT activities, reduced MDA content and apoptosis index of hepatocytes, and up-regulated HIF-1α protein level in liver tissue. These results suggest that the pretreatment of SN can protect hepatocytes against alcohol-induced acute injury, and the protective mechanism involves inhibition of oxidative stress and up-regulation of HIF-1α protein level.  相似文献   

6.
The influence of safranal, a constituent of Crocus sativus L. stigmas, on methyl methanesulfonate (MMS)-induced DNA damage was examined using alkaline single-cell gel electrophoresis (SCGE), or comet, assay in multiple organs of mice (liver, lung, kidney, and spleen). NMRI mice were divided into five groups, each of which contained five mice. The animals in different groups were received the following chemicals: physiological saline (10 mL/kg, ip), safranal (363.75 mg/kg, ip), MMS (120 mg/kg, ip), safranal (72.75 mg/kg, ip) 45 min prior to MMS administration, and safranal (363.75 mg/kg, ip) 45 min prior to MMS administration. Mice were sacrificed about 3 h after the administration of direct mutagen MMS, safranal, or saline, and the alkaline comet assay was used to evaluate the influence of safranal on DNA damage in different mouse organs. Increase in DNA migration was varied between 9.08 times (for spleen) and 22.12 times (for liver) in nuclei of different organs of MMS-treated mice, as compared with those of saline-treated animals (p < 0.001). In control groups, no significant difference was found in the DNA migration between safranal- and saline-pretreated mice. The MMS-induced DNA migration in safranal-pretreated mice (363.75 mg/kg) was reduced between 4.54-fold (kidney) and 7.31-fold (liver) as compared with those of MMS-treated animals alone (p < 0.001). This suppression of DNA damage by safranal was found to be depended on the dose, and pretreatment with safranal (72.75 mg/kg) only reduced DNA damage by 25.29%, 21.58%, 31.32%, and 25.88% in liver, lung, kidney, and spleen, respectively (p < 0.001 as compared with saline-treated group). The results of the present study showed that safranal clearly repressed the genotoxic potency of MMS, as measured by the comet assay, in different mouse organs, but the mechanism of this protection needs to be more investigated using different in vitro system assays and different experimental designs.  相似文献   

7.
Considering that lead caused a lot of health problems in the world, the present study was carried out to investigate the protective effect of captopril as antioxidants to reduce liver and spleen toxicity induced by lead. Animals were divided into 3 groups, the 1st group served as control group, the 2nd group received 20 mg/kg of lead acetate and the 3rd group received 50 mg/kg of captopril one hour prior to lead administration for 5 days. Results showed that lead intake caused severe alterations in the liver and spleen manifested by hepatocytes degeneration, leukocytic infiltration, fibrosis in liver and moderate to severe liver pathological score. Spleen showed ill-defined architecture, presence of large macrophages and lymphoid necrosis. Administration of captopril reduced hepatotoxicity, liver fibrosis and decrease in pathological scoring system. Moreover, reduced toxicity in spleen is represented by reduction in necrotic areas, more or less healthy lymphoid follicles and decreasing in pathological scoring system.  相似文献   

8.
Lin W  Wei X  Xue H  Kelimu M  Tao R  Song Y  Zhou Z 《Mutation research》2000,466(2):187-195
Nitric oxide (NO) as well as its donors has been shown to generate mutation and DNA damage in in vitro assays. The objective of this study was to identify that DNA single-strand breaks (SSBs) could be elicited by NO, not only in vitro but also in vivo. The alkaline single-cell gel electrophoresis (SCGE) was performed to examine the DNA damage in g12 cells and the cells isolated from the organs of mice exposed to sodium nitroprusside (SNP). A modified method, in which neither collagenase nor trypsin was necessary, was used to prepare the single-cell suspension isolated from organs of mice. Results showed that the exposure of g12 cells to 0.13-0.5 micromol/ml SNP with S9 for 1 h induced a concentration-dependent increase in DNA SSBs in g12 cells. The significant increase in DNA migration and comet frequency has appeared in the cells isolated from the spleen, thymus, and peritoneal macrophages of mice after injecting i.p. SNP in the dosage range of 0.67-6.0 mg/kg b.wt for 1 h. However, no obvious increase in DNA strand breaks was observed in the cells isolated from the liver, kidney, lung, brain and heart obtained from the same treated mice. These results suggested that DNA SSBs could be induced by NO in some cells both in vivo and in vitro. There were organ differences in sensitivity in the mice exposed to NO. Spleen, thymus, and macrophages might be the important targets of NO.  相似文献   

9.
对乙酰氨基酚诱导的小鼠药物性肝损伤的模型研究   总被引:1,自引:0,他引:1  
改良对乙酰氨基酚(acetaminophen,APAP)单独诱导小鼠急性肝损伤的模型和致死模型。随机将小鼠分为4组:空白对照组、APAP3h组、APAP6h组和APAP12h组,每组5只。饥饿15h后用对乙酰氨基酚诱发小鼠肝损伤。测定各组血清ALT、AST及胆红素含量,HE染色观察各组肝组织损伤情况。观察生存率时,小鼠随机分为对照组、禁食+APAP(500mg/kg)组、禁食+APAP(300mg/kg)组和不禁食+APAP(500mg/kg)组,四组同时给药,然后记录各组小鼠的生存情况,绘制四组小鼠的生存曲线。小鼠注射APAP后,随时间的延长,ALT、AST水平逐渐升高,均明显高于空白对照组(P〈0.05)。小鼠肝脏HE染色可见,APAP中毒组小鼠肝细胞坏死及炎性细胞浸润。禁食+APAP(500mg/kg)组小鼠自16h开始出现死亡,72h时全部死亡,死亡率明显高于不禁食组和禁食+APAP(300mg/kg)组小鼠。该研究对APAPI起的C57/BL6小鼠药物性肝损伤模型进行改良,使其更加稳定和便于研究,为进一步探究APAP诱导肝毒性的机制及防治措施奠定了基础。  相似文献   

10.
The growing resistance of microorganisms to antibiotics has been considered as a global public health problem. Therefore, the search for novel antimicrobial drugs, chemically unrelated to the presently used antibiotics, is urgently needed. Our group has recently characterized a new family of antimicrobial peptides – phylloseptins – isolated from the skin secretion of the South American amphibian Phyllomedusa hypochondrialis, which showed a strong antimicrobial effect against Gram-positive and Gram-negative bacteria. We now investigate the in vivo toxicity of synthetic phylloseptin-1 (PS-1) toward bone marrow, liver, spleen, kidney and lung after endovenous administration to Swiss mice of a bolus dose of 4 mg/kg. Genotoxicity was evaluated by quantifying erythrocyte micronuclei. PS-1-treated mice showed no alteration in the histology of liver, spleen, kidney and lung, as well as of blood biochemistry, as compared to normal controls. Cytotoxicity tests, evaluated either by blood cytometry or bone marrow polychromatophilic erythrocyte index, revealed no deleterious effect of PS-1. Moreover, the peptide showed no toxicity towards bone marrow erythrocytes. We concluded that, in a concentration ten times over that providing antimicrobial effect, synthetic PS-1 showed no in vivo toxicity.  相似文献   

11.
【目的】通过小鼠的急性毒性、30 d喂养及细菌移位试验,对马奶及其制品(酸马奶)中分离出来的7株肠球菌属乳酸菌进行初步安全性评价。【方法】分别对小鼠连续7 d及30 d灌胃不同剂量的肠球菌JHZ9、JHZ15、JHZ17、JHZ22、JHZ25、JHZ28、JNN1,对其一般体征进行观察,记录体重和食物摄入量,最后进行大体解剖,观察肝、肾、脾、心、肺并称重,同时进行细菌移位试验。【结果】除30 d喂养中,试验菌株JHZ17的高剂量组与生理盐水组差异显著(P0.05),7 d急性毒性试验及30 d喂养试验中各试验组小鼠体重、食物摄入量与对照组相比无显著性差异(P0.05),30 d喂养后小鼠各脏器(心、肝、脾、肺、肾)指标与对照组无显著性差异(P0.05),小鼠的经口急性毒性最大耐受剂量(MTD)大于1010 CFU/(mL bw)20 mL/(kg·d),属无毒级别,未发现细菌移位现象。【结论】肠球菌JHZ9、JHZ15、JHZ17、JHZ22、JHZ25、JHZ28、JNN1安全,无毒副作用。  相似文献   

12.
The effects of anacrotine, a pyrrolizidine alkaloid (PA) which has the structure of senecionine with an additional 6-hydroxy group, have been investigated in weanling male rats. When anacrotine was given i.p. (100 mg/kg), pyrrolic metabolites reached a peak level in the liver during the first 0.5 h, then fell rapidly to a lower level which subsequently declined more slowly. Pyrrolic metabolites accumulated in the lungs during the first hour to a level which then remained relatively steady for at least 4 h. The lung level of pyrrolic metabolites after 2 h was about 39% of the liver level, compared with 16% in rats given senecionine. Anacrotine caused acute centrilobular necrosis and congestion of the liver when 125 mg/kg or more was given i.p., but oral doses (up to 180 mg/kg) caused relatively little liver necrosis. Enlarged hepatocytes developed during ensuing weeks, but these were moderate compared with the bizarre giant cells often associated with pyrrolizidine intoxication. In contrast, anacrotine produced much more severe lung damage than most other pyrrolizidine alkaloids. The lungs were affected by i.p. or oral doses well below those needed to produce acute liver damage. Pulmonary congestion and oedema, extensive necrosis of the pulmonary endothelium, and thickening of alveolar septae, developed within 2 days after dosing. After single i.p. doses of 60 mg/kg or more progressive consolidation of lung tissue often led to death after 2-5 weeks. Hearts showed myocardial necrosis of the right ventricular wall. Dehydroanacrotine, the putative reactive pyrrolic metabolite of anacrotine, given i.v. to rats, caused dose-related chronic lung and heart damage identical to that produced by anacrotine, but after lower doses (6-27 mg/kg); larger amounts caused acute lung damage. It is suggested that the severe lung damage in animals given anacrotine is due to dehydroanacrotine, formed in the liver. This metabolite is more stable than the pyrrolic derivatives of most other pyrrolizidine alkaloids, and it is thus able to reach the lungs in relatively large amounts.  相似文献   

13.
A single dose of DTC was administered, in a dose-range from 0.6 mg/kg to 25 mg/kg, to mice immunized with 10(8) sheep red cells (SRC). All doses strongly enhanced plaque-forming spleen cell (PFC) responses, when given either 18 h before, simultaneously to, 6 h or 24 h after SRC immunization. However, the higher levels of immunostimulation were attained by DTC doses above 5 mg/kg. DTC-induced immunopotentiation was not accompanied by untoward effects, such as acute toxicity, splenomegalia or modifcations in counts of viable spleen lymphocytes.  相似文献   

14.
Small unilamellar liposomes with an average diameter of 80 nm were prepared from phosphatidyl choline of various sources using the dialysis method with cholate as a detergent. When 14C-labeled soybean liposomes were intravenously injected into male NMRI mice, up to 10% of the total label was found in the liver lipid. The uptake was dose-dependent and reached an apparent saturation 4 h after injection. The liver maintained a constant radioactivity corresponding to 1.9 +/- 0.13 mg phospholipid/g liver until ten hours after injection of 850 mg labeled phosphatidyl choline/kg body wt. Little radioactivity was taken up by the spleen. Analogous doses of liposomes prepared from egg yolk phosphatidyl choline led to a radioactivity corresponding to 1.3 +/- 0.4 mg lipid/g liver 4 h after injection. Liposomes with a similar size were prepared from hydrated, i.e., saturated phosphatidyl choline. After intravenous administration of these liposomes, an amount of 5.3 +/- 0.5 mg labeled lipid was found per g liver after 4 h. In contrast to unsaturated liposomes, 5.8 +/- 0.8 mg lipid per gram spleen was trapped by the spleen. The pharmacodynamic effect of these different liposomes was studied in benzo[a]pyrene-pretreated mice intoxicated with 400 mg/kg paracetamol. Animals which received paracetamol exhibited serum alanine aminotransferase activities of 4220 +/- 1140 units/l after 4 h and exhaled 120 +/- 19 nmol ethane kg-1 h-1. When pretreated with 850 mg soybean phosphatidyl choline/kg body wt. (i.v.) 2 h prior to paracetamol, the increase in serum transaminase activity was reduced to 117 +/- 104 units/l and ethane exhalation amounted to 18 +/- 8 nmol kg-1 h-1. In contrast, similar pretreatment with egg yolk phosphatidyl choline or hydrated phosphatidyl choline failed to protect against paracetamol-induced hepatotoxicity. The different pharmacodynamic effects of the two phosphatidyl cholines of plant or animal origin cannot be explained on the basis of their different pharmacokinetics. In the case of soybean phosphatidyl choline liposomes, the amount of radioactive lipid found in the liver correlated with the hepatoprotective potency.  相似文献   

15.
Mycotoxins which mainly consist of Aflatoxin (AF), Zearalenone (ZEN) and Deoxynivalenol (DON) are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize) was incorporated into the diet at three different doses (0, 5 and 20%) to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx) activity and malondialdehyde (MDA) level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT) activity in the serum, liver and kidney as well as superoxide dismutase (SOD) activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse.  相似文献   

16.
Liver injury accompanied by apoptosis of hepatocytes was provoked in mice by an intravenous injection of recombinant tumor necrosis factor-α (rTNF-α) (1.0 µg/kg) together with an intraperitoneal injection of D-galactosamine (D-gal) (500 mg/kg). Injection of various doses of dibutyryl cAMP (DBcAMP) protected mice from TNF-α/D-gal-induced liver injury as assessed by serum alanine aminotransferase (ALT) levels, histological examination and DNA fragmentation. DBcAMP significantly enhanced the Hsp70 expression in the hepatocytes of D-gal/TNF-α-injected mice in close correlation with supression of liver injury. DBcAMP induced Hsp70 expression in the hepatocyte in vitro. These results suggest that increase in Hsp70 expression by DBcAMP is involved in protective mechanisms by DBcAMP against TNF-α-induced liver injury in D-gal-sensitized mice.  相似文献   

17.
Although S-Adenosylmethionine (SAMe) has beneficial effects in many hepatic disorders, the effects of SAMe on acute alcohol-induced liver injury are unknown. In the present study, we investigated effects of SAMe on liver injury in mice induced by acute alcohol administration. Male C57BL/6 mice received ethanol (5 g/kg BW) by gavage every 12 hrs for a total of 3 doses. SAMe (5 mg/kg BW) was administrated i.p. once a day for three days before ethanol administration. Subsequent serum ALT level, hepatic lipid peroxidation, enzymatic activity of CYP2E1 and hepatic mitochondrial glutathione levels were measured colorimetrically. Intracellular SAMe concentration was measured by high-performance liquid chromatography (HPLC). Histopathological changes were assessed by H&E staining. Our results showed that acute ethanol administration caused prominent microvesicular steatosis with mild necrosis and an elevation of serum ALT activity. SAMe treatment significantly attenuated the liver injury. In association with the hepatocyte injury, acute alcohol administration induced significant decreases in both hepatic SAMe and mitochondrial GSH levels along with enhanced lipid peroxidation. SAMe treatment attenuated hepatic SAMe and mitochondrial GSH depletion and lipid peroxidation following acute alcohol exposure. These results demonstrate that SAMe protects against the liver injury and attenuates the mitochondrial GSH depletion caused by acute alcohol administration. SAMe may prove to be an effective therapeutic agent in many toxin-induced liver injuries including those induced by alcohol.  相似文献   

18.
《Journal of Physiology》1997,91(3-5):139-149
We describe the effects of nitric oxide (NO) agonists and antagonists and the influence of a novel organoprotective pentadecapeptide BPC 157, on the development of pulmonary hypertension syndrome and tissue lesions in chicks. Acute toxicity, which includes single dose application of saline (1 mL intraperitoneally (ip)), BPC 157 (10 μg/kg bw), L-NAME (NO antagonist, doses 50, 100, 150 mg/kg bw) and L-arginine (NO agonist/100 mg/kg bw with their combination L-NAME + BPC 157; L-NAME + L-arginine) was investigated. In this experiment pathohistological examination of the spleen, heart, liver and lungs and hematological analysis was conducted. In the chronic toxicity experiment, the animals were treated daily for 5 weeks with L-NAME (10 mg/kg bw), L-arginine (100 mg/kg bw), BPC 157 (10 μg/kg bw) and their combinations (L-NAME + BPC 157; L-NAME + L-arginine) ip. Seven animals from each group, including controls (saline 1 mL ip) were killed every week. Application of L-NAME caused pulmonary hypertension syndrome (PHS) in the treated chicks, which was prevented by the simultaneous application of L-arginine and BPC 157. Pathohistological examination of both acute and chronic toxicity revealed that L-NAME caused severe tissue damage (myocardial and hepatic cell necrosis, necrosis of the lymphoid cells in the spleen) while L-arginine provoked predominantly congestion, edema and hemorrhages in all organs. The effect of L-NAME was successfully inhibited by the application of L-arginine and BPC 157 but the latter substance did not cause any tissue or organ damage. Hematological analysis shows significant hemoglobin and leukocyte number decrease in the L-NAME-treated groups of chicks.  相似文献   

19.
As part of a collaborative study, the Mammalian Mutagenesis Study Group (MMS), a sub-organization of the Environmental Mutagen Society of Japan (JEMS) conducted mutagenicity tests in MutaMouse. Using a positive selection method, we studied the organ-specificity and time dependence of mutation induction by 4-nitroquinoline 1-oxide (4NQO). A single dose of 4NQO was administered intraperitoneally (7.5 or 15 mg/kg) or orally (200 mg/kg) to groups of male mice. On days 7, 14 and 28 after treatment, we isolated the liver, kidney, lung, spleen, bone marrow, testis and stomach in the intraperitoneal administration experiment and the liver, lung, bone marrow, testis and stomach in the oral administration experiment. In addition, we performed the peripheral blood micronucleus test to evaluate clastogenicity. In the mice treated intraperitoneally at 7.5 mg/kg, we found increased mutant frequency (MF) only in the lung, where the MF did not vary with expression time. In the mice treated at 15 mg/kg, we found increased MF in the liver, bone marrow and lung. In orally treated mice, the MF was high in the lung and liver and very high in the bone marrow and stomach while the increase in the testis was negligible. As the expression time was prolonged, the MF tended to increase in the liver, decrease in the bone marrow, and remain stable in the lung, testis and stomach. The incidence of micronucleus induction in peripheral blood cells was significantly increased (p<0.01) in the 4NQO groups when compared with the vehicle control group by intraperitoneal treatment. Thus, these assay systems appeared to be of use in detecting not only genetic mutation but also chromosomal aberration.  相似文献   

20.
The single injection of levulinic acid oxime (250 mg/rat) or α-ketoglutaric acid oxime (250 mg/rat) on rats, carrying radioactive cesium, promoted both urinary and fecal excretion of this radionuclide. The administration of levulinic acid oxime (sodium salt) decreased the cesium retention by liver. The administration of the oxime did not have influence on the urinary excretion of sodium and potassium in normal rats. The toxicity of the oxime was low. The LD50 of α-ketoglutaric acid oxime was 3500 mg/kg (mice, intraperitoneally). (The LD50 of levulinic acid oxime has already been indicated as 2040 mg/kg (mice, intravenously).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号