首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using a panel of 603 commensal and pathogenic Escherichia coli and Shigella isolates, we showed that mutation rates of strains vary considerably among different ecotypes. Uropathogenic strains had the highest frequency of mutators, while strains from patients with bacteremia had the lowest mutation rates. No correlation between the mutation rates and antibiotic resistance was observed among the studied strains.  相似文献   

2.
致肾盂肾炎大肠杆菌的毒力因子和调控   总被引:2,自引:0,他引:2  
致肾盂肾炎大肠杆菌引起人的尿路感染,它的毒力因子包括表面毒力因子和分泌毒力因子两大类。表面毒力因子包括菌毛、鞭毛、黏附素和多糖类物质,主要在细菌的侵染过程中起作用。分泌毒力因子主要是溶血素、细胞毒性坏死因子等毒素蛋白,主要对宿主细胞产生毒力作用。本文简要综述致肾盂肾炎大肠杆菌毒力因子分泌所需要的5种分泌机制,并论及毒力因子的宏观调控和影响毒力调控的因素。  相似文献   

3.
Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2 and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.  相似文献   

4.
Pulsed-field gel electrophoresis (PFGE) was used to investigate the dissemination and diversity of ampicillin-resistant (Ampr) and nalidixic acid-resistant (Nalr) commensal Escherichia coli strains in a cohort of 48 newborn calves. Calves were sampled weekly from birth for up to 21 weeks and a single resistant isolate selected from positive samples for genotyping and further phenotypic characterization. The Ampr population showed the greatest diversity, with a total of 56 different genotype patterns identified, of which 5 predominated, while the Nalr population appeared to be largely clonal, with over 97% of isolates belonging to just two different PFGE patterns. Distinct temporal trends were identified in the distribution of several Ampr genotypes across the cohort, with certain patterns predominating at different points in the study. Cumulative recognition of new Ampr genotypes within the cohort was biphasic, with a turning point coinciding with the housing of the cohort midway through the study, suggesting that colonizing strains were from an environmental source on the farm. Multiply resistant isolates dominated the collection, with >95% of isolates showing resistance to at least two additional antimicrobials. Carriage of resistance to streptomycin, sulfamethoxazole, and tetracycline was the most common combination, found across several different genotypes, suggesting the possible spread of a common resistance element across multiple strains. The proportion of Ampr isolates carrying sulfamethoxazole resistance increased significantly over the study period (P < 0.05), coinciding with a decline in the most common genotype pattern. These data indicate that calves were colonized by a succession of multiply resistant strains, with a probable environmental source, that disseminated through the cohort over time.  相似文献   

5.
We investigated the prevalence and persistence of Escherichia coli strains in four sewage treatment plants (STPs) in a subtropical region of Queensland, Australia. In all, 264 E. coli strains were typed using a high-resolution biochemical fingerprinting method and grouped into either a single or a common biochemical phenotype (S-BPT and C-BPT, respectively). These strains were also tested for their phylogenetic groups and 12 virulence genes associated with intestinal and extraintestinal E. coli strains. Comparison of BPTs at various treatment stages indicated that certain BPTs were found in two or all treatment stages. These BPTs constituted the highest proportion of E. coli strains in each STP and belonged mainly to phylogenetic group B2 and, to a lesser extent, group D. No virulence genes associated with intestinal E. coli were found among the strains, but 157 (59.5%) strains belonging to 14 C-BPTs carried one or more virulence genes associated with uropathogenic strains. Of these, 120 (76.4%) strains belonged to seven persistent C-BPTs and were found in all four STPs. Our results indicate that certain clonal groups of E. coli with virulence characteristics of uropathogenic strains can survive the treatment processes of STPs. These strains were common to all STPs and constituted the highest proportion of the strains in different treatment tanks of each STP.Community sewage treatment plants (STPs) receive waste from diverse sources, including residential, industrial, and recreational facilities (31). Waste generated from these facilities contains the liquid and fecal discharges of humans and animals, household wastes, industry-specific materials, and storm water runoff (31). These materials are treated through primary, secondary, and tertiary sedimentation processes (18). Following these processes, effluent is normally clear and thus often recycled for nonpotable use (20), with excess water released into receiving waterways. However, due to possible malfunctions or poor management of wastewater systems (1), effluent containing pathogenic bacteria can be discharged into receiving waterways (11, 34). It has been speculated that waters contaminated with feces are a great risk to human health, as they are likely to contain human-specific enteric pathogens, including Salmonella spp. (30), Shigella spp. (10), enteroviruses (12), hepatitis A virus (13), and pathogenic Escherichia coli (30).E. coli, while widely used as an indicator bacterium (30, 35), can actually be pathogenic and be responsible for both intestinal and extraintestinal diseases (16). Intestinal pathogenic strains of E. coli are rarely encountered in the fecal flora of healthy hosts. Extraintestinal pathogenic E. coli (ExPEC) strains commonly cause infections of any organ or anatomical site (28). The ability of these pathogenic bacteria to cause disease is due to their acquisition of specialized virulence factors, which commensal E. coli strains typically lack. These specialized virulence factors allow them to cause a broad spectrum of diseases (17, 28), such as gastroenteritis (34), diarrhea (16), urinary tract infections and meningitis (29), and soft tissue infections and bacteremia (28). E. coli strains belong to four main phylogenetic groups (A, B1, B2, and D) (2), with pathogenic strains belonging mostly to phylogenetic group B2 and, to a lesser extent, group D. Another phylogenetic group (group E) has also been identified; however, it is uncommon and is not widely used (5).Presently, chlorination is an extremely widespread practice aimed at reducing the pathogen load in the final effluent to levels low enough to ensure that the organisms will not cause disease when the wastewater is discharged (31). Despite this, some pathogenic strains of E. coli may survive to become a significant public health risk (14, 35). The aim of this study was to investigate the presence and survival of these pathogenic E. coli strains during the treatment processes of four community STPs with different capacities in South East Queensland, Australia.  相似文献   

6.
Adherent-invasive Escherichia coli (AIEC) are abnormally predominant on Crohn''s disease (CD) ileal mucosa. AIEC reference strain LF82 adheres to ileal enterocytes via the common type 1 pili adhesin FimH and recognizes CEACAM6 receptors abnormally expressed on CD ileal epithelial cells. The fimH genes of 45 AIEC and 47 non-AIEC strains were sequenced. The phylogenetic tree based on fimH DNA sequences indicated that AIEC strains predominantly express FimH with amino acid mutations of a recent evolutionary origin - a typical signature of pathoadaptive changes of bacterial pathogens. Point mutations in FimH, some of a unique AIEC-associated nature, confer AIEC bacteria a significantly higher ability to adhere to CEACAM-expressing T84 intestinal epithelial cells. Moreover, in the LF82 strain, the replacement of fimH LF82 (expressing FimH with an AIEC-associated mutation) with fimH K12 (expressing FimH of commensal E. coli K12) decreased the ability of bacteria to persist and to induce severe colitis and gut inflammation in infected CEABAC10 transgenic mice expressing human CEACAM receptors. Our results highlight a mechanism of AIEC virulence evolution that involves selection of amino acid mutations in the common bacterial traits, such as FimH protein, and leads to the development of chronic inflammatory bowel disease (IBD) in a genetically susceptible host. The analysis of fimH SNPs may be a useful method to predict the potential virulence of E. coli isolated from IBD patients for diagnostic or epidemiological studies and to identify new strategies for therapeutic intervention to block the interaction between AIEC and gut mucosa in the early stages of IBD.  相似文献   

7.
Although the main reservoirs for pathogenic Escherichia coli O157:H7 are cattle and the cattle environment, factors that affect its tenure in the bovine host and its survival outside humans and cattle have not been well studied. It is also not understood what physiological properties, if any, distinguish these pathogens from commensal counterparts that live as normal members of the human and bovine gastrointestinal tracts. To address these questions, individual and competitive fitness experiments, indirect antagonism assays, and antibiotic resistance and carbon utilization analyses were conducted using a strain set consisting of 122 commensal and pathogenic strains. The individual fitness experiments, under four different environments (rich medium, aerobic and anaerobic; rumen medium, anaerobic; and a minimal medium, aerobic) revealed no differences in growth rates between commensal E. coli and E. coli O157:H7 strains. Indirect antagonism assays revealed that E. coli O157:H7 strains more frequently produced inhibitory substances than commensal strains did, under the conditions tested, although both groups displayed moderate sensitivity. Only minor differences were noted in the antibiotic resistance patterns of the two groups. In contrast, several differences between commensal and O157:H7 groups were observed based on their carbon utilization profiles. Of 95 carbon sources tested, 27 were oxidized by commensal E. coli strains but not by the E. coli O157:H7 strains. Despite the observed physiological and biochemical differences between these two groups of E. coli strains, however, the O157:H7 strains did not appear to possess traits that would confer advantages in the bovine or extraintestinal environment.  相似文献   

8.
Bacterial growth in multicellular communities, or biofilms, offers many potential advantages over single-cell growth, including resistance to antimicrobial factors. Here we describe the interaction between the biofilm-promoting components curli fimbriae and cellulose of uropathogenic E. coli and the endogenous antimicrobial defense in the urinary tract. We also demonstrate the impact of this interplay on the pathogenesis of urinary tract infections. Our results suggest that curli and cellulose exhibit differential and complementary functions. Both of these biofilm components were expressed by a high proportion of clinical E. coli isolates. Curli promoted adherence to epithelial cells and resistance against the human antimicrobial peptide LL-37, but also increased the induction of the proinflammatory cytokine IL-8. Cellulose production, on the other hand, reduced immune induction and hence delayed bacterial elimination from the kidneys. Interestingly, LL-37 inhibited curli formation by preventing the polymerization of the major curli subunit, CsgA. Thus, even relatively low concentrations of LL-37 inhibited curli-mediated biofilm formation in vitro. Taken together, our data demonstrate that biofilm components are involved in the pathogenesis of urinary tract infections by E. coli and can be a target of local immune defense mechanisms.  相似文献   

9.
A total of 318 Escherichia coli isolates obtained from diarrheic and healthy pigs in Ontario from 2001 to 2003 were examined for their susceptibility to 19 antimicrobial agents. They were tested by PCR for the presence of resistance genes for tetracycline, streptomycin, sulfonamides, and apramycin and of 12 common virulence genes of porcine E. coli. Antimicrobial resistance frequency among E. coli isolates from swine in Ontario was moderate in comparison with other countries and was higher in isolates from pigs with diarrhea than in isolates from healthy finisher pigs. Resistance profiles suggest that cephamycinases may be produced by ≥8% of enterotoxigenic E. coli (ETEC). Resistance to quinolones was detected only in enterotoxigenic E. coli (≤3%). The presence of sul3 was demonstrated for the first time in Canada in porcine E. coli isolates. Associations were observed among tetA, sul1, aadA, and aac(3)IV and among tetB, sul2, and strA/strB, with a strong negative association between tetA and tetB. The paa and sepA genes were detected in 92% of porcine ETEC, and strong statistical associations due to colocation on a large plasmid were observed between tetA, estA, paa, and sepA. Due at least in part to gene linkages, the distribution of resistance genes was very different between ETEC isolates and other porcine E. coli isolates. This demonstrates that antimicrobial resistance epidemiology differs significantly between pathogenic and commensal E. coli isolates. These results may have important implications with regards to the spread and persistence of resistance and virulence genes in bacterial populations and to the prudent use of antimicrobial agents.  相似文献   

10.
Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids.  相似文献   

11.
Uropathogenic Escherichia coli as a model of host-parasite interaction   总被引:3,自引:0,他引:3  
Resistance to mucosal infection varies greatly in the population, but the molecular basis of disease susceptibility is often unknown. Studies of host-pathogen infections are helpful to identify virulence factors, which characterise disease isolates, and successful defence strategies of hosts that resist infection. In the urinary tract infection (UTI) model, we have identified crucial steps in the pathogen-activated innate host response, and studied the genetic control of these activation steps. Furthermore, genetic variation in the innate host-response defence is investigated as a basis of disease susceptibility. The Toll-like receptor 4 (TLR4) controls initial mucosal response to uropathogenic Escherichia coli (UPEC). Bacterial TLR4 activation in epithelial cells leads to chemokine secretion and neutrophil recruitment and TLR4 mutant mice develop an asymptomatic carrier state. The chemokine receptor CXCR1 determines the efficiency of neutrophil migration and activation, and thus of bacterial clearance. CXCR1 mutant mice become bacteremic and develop renal scars and studies in UTI prone children have detected low CXCR1 expression, suggesting that CXCR1 is also essential for human disease susceptibility.  相似文献   

12.
Although Escherichia coli typically colonizes the intestinal tract and vagina of giant pandas, it has caused enteric and systemic disease in giant pandas and greatly impacts the health and survival of this endangered species. In order to understand the distribution and characteristics of E. coli from giant pandas, 67 fecal and 30 vaginal E. coli isolates from 21 giant pandas were characterized for O serogroups, phylogenetic groups, antimicrobial susceptibilities, and pulsed-field gel electrophoresis (PFGE) profiles. In addition, these isolates were tested for the presence of extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) by multiplex PCR detection of specific virulence genes. The most prevalent serogroups for all E. coli isolates were O88, O18, O167, O4, and O158. ExPEC isolates were detected mostly in vaginal samples, and DEC isolates were detected only in fecal samples. Phylogenetic group B1 predominated in fecal isolates, while groups B2 and D were frequently detected in vaginal isolates. Resistance to trimethoprim-sulfamethoxazole was most frequently observed, followed by resistance to nalidixic acid and tetracycline. All except five isolates were typeable by using XbaI and were categorized into 74 PFGE patterns. Our findings indicate that panda E. coli isolates exhibited antimicrobial resistance, and potentially pathogenic E. coli isolates were present in giant pandas. In addition, these E. coli isolates were genetically diverse. This study may provide helpful information for developing strategies in the future to control E. coli infections of giant pandas.  相似文献   

13.
The study of several Escherichia coli intestinal commensal isolates per individual in 265 healthy human subjects belonging to seven populations distributed worldwide showed that the E. coli population is highly structured, with major differences between the tropical and temperate populations.  相似文献   

14.
Urinary tract infections are the most common urologic disease in the United States and one of the most common bacterial infections of any organ system. Biofilms persist in the urinary tract and on catheter surfaces because biofilm microorganisms are resistant to host defense mechanisms and antibiotic therapy. The first step in the establishment of biofilm infections is bacterial adhesion; preventing bacterial adhesion represents a promising method of controlling biofilms. Evidence suggests that capsular polysaccharides play a role in adhesion and pathogenicity. This study focuses on the role of physiochemical and specific binding interactions during adhesion of colanic acid exopolysaccharide mutant strains. Bacterial adhesion was evaluated for isogenic uropathogenic Escherichia coli strains that differed in colanic acid expression. The atomic force microscope (AFM) was used to directly measure the reversible physiochemical and specific binding interactions between bacterial strains and various substrates as bacteria initially approach the interface. AFM results indicate that electrostatic interactions were not solely responsible for the repulsive forces between the colanic acid mutant strains and hydrophilic substrates. Moreover, hydrophobic interactions were not found to play a significant role in adhesion of the colanic acid mutant strains. Adhesion was also evaluated by parallel-plate flow cell studies in comparison to AFM force measurements to demonstrate that prolonged incubation times alter bacterial adhesion. Results from this study demonstrate that the capsular polysaccharide colanic acid does not enhance bacterial adhesion but rather blocks the establishment of specific binding as well as time-dependent interactions between uropathogenic E. coli and inert substrates.  相似文献   

15.
16.
17.
Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development.  相似文献   

18.
Characterization of an Escherichia coli O157 strain collection (n = 42) derived from healthy Hungarian cattle revealed the existence of diverse pathotypes. Enteropathogenic E. coli (EPEC; eae positive) appeared to be the most frequent pathotype (n = 22 strains), 11 O157 strains were typical enterohemorrhagic E. coli (EHEC; stx and eae positive), and 9 O157 strains were atypical, with none of the key stx and eae virulence genes detected. EHEC and EPEC O157 strains all carried eae-gamma, tir-gamma, tccP, and paa. Other virulence genes located on the pO157 virulence plasmid and different O islands (O island 43 [OI-43] and OI-122), as well as espJ and espM, also characterized the EPEC and EHEC O157 strains with similar frequencies. However, none of these virulence genes were detected by PCR in atypical O157 strains. Interestingly, five of nine atypical O157 strains produced cytolethal distending toxin V (CDT-V) and carried genes encoding long polar fimbriae. Macro-restriction fragment enzyme analysis (pulsed-field gel electrophoresis) revealed that these E. coli O157 strains belong to four main clusters. Multilocus sequence typing analysis revealed that five housekeeping genes were identical in EHEC and EPEC O157 strains but were different in the atypical O157 strains. These results suggest that the Hungarian bovine E. coli O157 strains represent at least two main clones: EHEC/EPEC O157:H7/NM (nonmotile) and atypical CDT-V-producing O157 strains with H antigens different from H7. The CDT-V-producing O157 strains represent a novel genogroup. The pathogenic potential of these strains remains to be elucidated.Escherichia coli O157:H7 is a food- and waterborne zoonotic pathogen with serious effects on public health. E. coli O157:H7 causes diseases in humans ranging from uncomplicated diarrhea to hemorrhagic colitis and hemolytic-uremic syndrome (HUS) (30). Typically, enterohemorrhagic E. coli (EHEC) strains express two groups of important virulence factors: one or more Shiga toxins (Stx; also called verotoxins), encoded by lambda-like bacteriophages, and a pathogenicity island called the locus of enterocyte effacement (LEE) encoding all the proteins necessary for attaching and effacing lesions of epithelial cells (41). Comparative genomic studies of E. coli O157:H7 strains revealed extensive genomic diversity related to the structures, positions, and genetic contents of bacteriophages and the variability of putative virulence genes encoding non-LEE effector proteins (29, 43).Ruminants and, in particular, healthy cattle are the major reservoir of E. coli O157:H7, although the prevalence of O157:H7 strains in cattle may vary widely, as reviewed by Caprioli et al. (12). E. coli O157:H7 has been found to persist and remain infective in the environment for a long time, e.g., for at least 6 months in water trough sediments, which may be an important environmental niche.In Hungary, infections with E. coli O157 and other Shiga toxin-producing E. coli (STEC) strains in humans in cases of “enteritidis infectiosa” have been notifiable since 1998 on a case report basis. Up to now, the disease has been sporadic, and fewer than 100 (n = 83) cases of STEC infection among 2,700 suspect cases have been reported since 2001. However, until the present study, no systematic, representative survey of possible animal sources had been performed.In this study, our aim was to investigate healthy cattle in Hungary for the presence of strains of E. coli O157 and the genes encoding Shiga toxins (stx1 and stx2) and intimin (eae) and a wide range of putative virulence genes found in these strains. In addition, the phage type (PT) was determined, and pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to further compare the strains at the molecular level. Shiga toxin and cytolethal distending toxin (CDT) production was also examined, and phage induction experiments were conducted. The high incidence of enteropathogenic E. coli (EPEC; eae-positive) O157:H7 strains and atypical (eae- and stx-negative) O157 strains indicates that cattle are a major reservoir of not only EHEC O157 but also EPEC O157 and atypical E. coli O157 strains. These atypical, non-sorbitol-fermenting O157 strains frequently produced CDT-V and may represent a novel O157 clade as demonstrated by MLST and PFGE.  相似文献   

19.
If the acquisition of virulence genes (VGs) for pathogenicity were not solely acquired through horizontal gene transfers of pathogenicity islands, transposons, and phages, then clonal clusters of enterotoxigenic Escherichia coli (ETEC) would contain few or even none of the VGs found in strains responsible for extraintestinal infections. To evaluate this possibility, 47 postweaning diarrhea (PWD) ETEC strains from different geographical origins and 158 commensal E. coli isolates from the gastrointestinal tracts of eight group-housed healthy pigs were screened for 36 extraintestinal and 18 enteric VGs using multiplex PCR assays. Of 36 extraintestinal VGs, only 8 were detected (fimH, traT, fyuA, hlyA, kpsMtII, k5, iha, and ompT) in the ETEC collection. Among these, hlyA (α-hemolysin) and iha (nonhemagglutinating adhesin) occurred significantly more frequently among the ETEC isolates than in the commensal isolates. Clustering analysis based on the VG profiles separated commensal and ETEC isolates and even differentiated serogroup O141 from O149. On the other hand, pulsed-field gel electrophoresis (PFGE) successfully clustered ETEC isolates according to both serotype and geographical origin. In contrast, the commensal isolates were heterogeneous with respect to both serotype and DNA fingerprint. This study has validated the use of VG profiling to examine pathogenic relationships between porcine ETEC isolates. The clonal relationships of these isolates can be further clarified by PFGE fingerprinting. The presence of extraintestinal VGs in porcine ETEC confirmed the hypothesis that individual virulence gene acquisitions can occur concurrently against a background of horizontal gene transfers of pathogenicity islands. Over time, this could enable specific clonotypes to respond to host selection pressure and to evolve into new strains with increased virulence.  相似文献   

20.
Colicin K exhibited pronounced inhibitory activity against uropathogenic Escherichia coli (UPEC) strains. Low prevalence of colicin K production and a relatively high prevalence of ColE1-like plasmids were determined among 215 UPEC strains from Slovenia. Sequencing of the colicin K-encoding pColK-K235 revealed a mosaic structure and the presence of the insertion sequence IS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号