首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.  相似文献   

2.
Diabetic nephropathy is both a common and a severe complication of diabetes mellitus. Iron is an essential trace element. However, excess iron is toxic, playing a role in the pathogenesis of diabetic nephropathy. The present study aimed to determine the extent of the interaction between iron and type 2 diabetes in the kidney. Male rats were randomly assigned into four groups: control, iron (300-mg/kg iron dextran), diabetes (a single dose of intraperitoneal streptozotocin), and iron + diabetes group. Iron supplementation resulted in a higher liver iron content, and diabetic rats showed higher serum glucose compared with control rats, which confirmed the model as iron overload and diabetic. It was found that iron + diabetes group showed a greater degree of kidney pathological changes, a remarkable reduction in body weight, and a significant increase in relative kidney weight and iron accumulation in rat kidneys compared with iron or diabetes group. Moreover, malondialdehyde values in the kidney were higher in iron + diabetes group than in iron or diabetes group, sulfhydryl concentration and glutathione peroxidase activity were decreased by the diabetes and iron + diabetes groups, and protein oxidation and nitration levels were higher in the kidney of iron + diabetes group as compared to iron or diabetes group. However, iron supplementation did not elevate the glucose level of a diabetic further. These results suggested that iron increased the diabetic renal injury probably through increased oxidative/nitrative stress and reduced antioxidant capacity instead of promoting a rise in blood sugar levels; iron might be a potential cofactor of diabetic nephropathy, and strict control of iron would be important under diabetic state.  相似文献   

3.
Increased levels of iron in specific brain regions have been reported in neurodegenerative disorders. It has been postulated that iron exerts its deleterious effects on the nervous system by inducing oxidative damage. In a previous study, we have shown that iron administered during a particular period of the neonatal life induces oxidative damage in brain regions in adult rats. The aim of the present study was to evaluate the possible protective effect of selegiline, a monoamino-oxidase B (MAO-B) inhibitor used in pharmacotherapy of Parkinson’s disease, against iron-induced oxidative stress in the brain. Results have shown that selegiline (1.0 and 10.0 mg/kg), when administered early in life was able to protect the substantia nigra as well as the hippocampus against iron-induced oxidative stress, without affecting striatum. When selegiline (10.0 mg/kg) was administered in the adult life to iron-treated rats, oxidative stress was reduced only in the substantia nigra.  相似文献   

4.
Polychlorinated biphenyls (PCBs) exposure produces neurodegeneration and induces oxidative stress. Neuroprotective role of quercetin, on PCBs induced apoptosis in hippocampus has not yet been studied. The present study is focused to see whether quercetin supplementation precludes against PCBs induced oxidative stress and hippocampal apoptosis. The results have shown that quercetin at 50 mg/kg bwt/30 days has protected oxidative stress in hippocampus of adult male rats. Quercetin, a free radical scavenger decreased the levels of oxidative stress markers in the hippocampus of simultaneous PCB+quercetin treated rats. The pro-apoptotic and anti-apoptotic molecules such as Bad, Bid, Bax and Bcl2 were altered in the hippocampus of experimental animals. PCBs increased the DNA damage and induced neurodegeneration were assessed by histological studies. PCB induced ROS may be linked to increased hippocampal neuronal apoptosis. Quercetin supplementation decreased the neuronal damage and scavenged the free radicals induced by PCBs and protects PCBs induced apoptosis and oxidative stress.  相似文献   

5.
脂肪组织在调控代谢稳态和运动适应中扮演着重要的角色。肥胖引起的脂肪组织氧化应激是2型糖尿病与代谢综合征等的重要病理特征,是促进脂肪组织炎症和胰岛素抵抗的重要机制。氧化应激可以引起脂肪细胞趋化因子表达,募集炎症细胞浸润脂肪组织,炎症细胞分泌大量的炎症因子,并促进了局部和系统的胰岛素抵抗与慢性炎症。运动对肥胖相关的慢性代谢病的有效干预与运动的抗氧化效应相关。本文总结了氧化应激在脂肪组织炎症和胰岛素抵抗中的作用,以及运动对脂肪组织氧化应激的调控。  相似文献   

6.
茶多酚对NASH 大鼠肝脏组织VEGF 及氧化应激的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:茶多酚对NASH大鼠肝脏组织VEGF及氧化应激的影响。方法:雄性SD大鼠30只,随机分为3组,正常对照组、模型组、茶多酚治疗组。正常组普通饲料喂养,模型组喂高脂饮食,茶多酚治疗组在高脂饮食12周后茶多酚(150mg(/kg.d)灌胃治疗,16周末处死各组大鼠,留取肝脏组织,观察各组大鼠肝组织病理改变,测定其肝脏丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性以及血管内皮生长因子(VEGF)、Ⅰ、Ⅲ型胶原的表达。结果:模型组大鼠肝组织中SOD活性降低而MDA含量以及VEGF、Ⅰ、Ⅲ型胶原表达均明显高于正常组。茶多酚治疗可减轻肝纤维化程度,显著升高肝组织中SOD活性、降低MDA含量以及VEGF、Ⅰ、Ⅲ型胶原表达水平。结论:茶多酚可通过抑制肝纤维化组织VEGF表达,降低肝组织氧化应激水平而发挥抗肝纤维化作用。  相似文献   

7.
8.
The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.  相似文献   

9.
While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.  相似文献   

10.
Intake of green tea catechin (GTC) for 4 weeks was found to elevate vitamin E level in the mucosa of the rat large intestine. Iron-induced lipid peroxidation of the mucosal homogenate was suppressed by intake of GTC in rats fed monounsaturated fatty acid (MUFA), indicating that the protective effect of dietary GTC on mucosal oxidative stress is enhanced by combination with a MUFA-rich diet.  相似文献   

11.
The mechanisms of oxidative stress in schizophrenic patients are not fully understood. In the present study, we investigated the effect of elevated level of homocysteine (Hcys) on some parameters of oxidative stress, namely thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation in plasma, the level of carbonyl groups in plasma proteins, as well as the amount of 3-nitrotyrosine in plasma proteins isolated from schizophrenic patients. Patients hospitalised in I and II Psychiatric Department of Medical University in Lodz, Poland were interviewed with special questionnaire (treatment, course of diseases, dyskinesis and other EPS). According to DSM-IV criteria all patients had diagnosis of paranoid type. They were treated with antipsychotic drugs (clozapine, risperidone, olanzapine). Mean time of schizophrenia duration was about 5 years. High-performance liquid chromatography was used to analyse the total level of homocysteine in plasma. Levels of carbonyl groups and 3-nitrotyrosine residues in plasma proteins were measured by ELISA and a competition ELISA, respectively. The lipid peroxidation in plasma was measured by the level of TBARS. Our results showed that in schizophrenic patients the amount of homocysteine in plasma was higher in comparison with the control group. We also observed a statistically increased level of biomarkers of oxidative/nitrative stress such as carbonyl groups or 3-nitrotyrosine in plasma proteins from schizophrenic patients. Moreover, our experiments indicate that the correlation between the increased amount of homocysteine and the oxidative stress exists. Considering the data presented in this study, we suggest that the elevated Hcys in schizophrenic patients may stimulate the oxidative stress.  相似文献   

12.
Energy-Metabolising Enzymes in Brain Regions of Adult and Aging Rats   总被引:3,自引:5,他引:3  
Abstract: The regional enzyme activities of glucose metabolism in the rat brain were investigated. Hexokinase (EC 2.7.1.1) and pyruvate dehydrogenase (EC 1.2.4.1), key enzymes for glucose metabolism, showed no changes in activity in all the regions studied of the aging brain as compared with the adult brain. However, the activity of d -3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) is low throughout the adult brain and, in contrast with hexokinase and pyruvate dehydrogenase, its activity decreases significantly during aging. Other enzymes that showed significant decreases during aging are aldolase (EC 4.1.2.13), lactate dehydrogenase (EC 1.1.1.27), citrate synthase (EC 4.1.3.7), and NAD+-linked isocitrate dehydrogenase (EC 1.1.1.41). The catabolic enzyme in cholinergic metabolism, acetylcholinesterase (EC 3.1.1.7), selected as an example of a non-energy-metabolising enzyme, also showed significant decreases in all regions of the brain in aging, although its highest activity remained in the striatum. These results are discussed with respect to the energy metabolism in various brain regions and their status with aging.  相似文献   

13.
The purpose of this study was to examine oxidative stress induced by dietary vanadium in the mucosa of different parts of intestine including duodenum, jejunum, ileum, and cecal tonsil. A total of 420 1-day-old avian broilers were divided into six groups and fed on a corn–soybean basal diet as control diet or the same basal diet supplemented with 5, 15, 30, 45, and 60 mg/kg vanadium as ammonium metavanadate. During the experimental period of 42 days, oxidative stress parameters were determined for both control and experimental groups. The results showed that malondialdehyde content was significantly higher (p < 0.05 or p < 0.01) in 30, 45, and 60 mg/kg groups than in control group. In contrast, the activities of superoxide dismutase, catalase, and glutathione peroxidase, and ability to inhibit hydroxyl radical, and glutathione hormone content were significantly decreased (p < 0.05 or p < 0.01) mainly in 45 and 60 mg/kg groups in comparison with those of control group. However, the abovementioned oxidative stress parameters were not significantly changed (p > 0.05) in 5 and 15 mg/kg groups. It was concluded that dietary vanadium in excess of 30 mg/kg could cause obvious oxidative stress in the intestinal mucosa, which could impact the antioxidant function of intestinal tract in broilers.  相似文献   

14.
Social isolation during early development is one of the most potent stressors that can cause alterations in the processes of brain maturation, leading to behavioral and neurochemical changes that may persist to adulthood. Exposure to palatable diets during development can also affect neural circuits with long-term consequences. The aims of the present study were to investigate the long-term effects of isolation stress during the pre-pubertal period on the exploratory and anxiety-like behavior, the oxidative stress parameters and the respiratory chain enzymes activities in the hippocampus of adult male rats under chronic palatable diets. The results showed that isolated rats receiving either normal or high-fat diet during the pre-pubertal period presented an anxiolytic-like behavior. The animals exposed to stress and treated with high-carbohydrate diet, rich in disaccharides, on the other hand, presented the opposite pattern of behavior. Stress in the pre-pubertal period also leads to decreased activity of the antioxidant enzymes and the mitochondrial respiratory chain complexes II and IV and decreased total thiol content. These effects were reversed by high-fat diet when it was associated with stress. The effects of a sub-acute pre-pubertal isolation stress on anxiety-like behavior and on hippocampal oxidative imbalance during adulthood appear to be modulated by different types of diets, and probably different mechanisms are involved.  相似文献   

15.
Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX) to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing) rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.  相似文献   

16.
Aging can be defined as the condition where stressors are not counteracted by protective functions, leading to a dysregulation in development. These changes can be translated into decrements in neuronal functioning accompanied by behavioral declines, such as decreases in motor and cognitive performance, in both humans and animals. When coupled with genetic alterations, the ultimate expression of these changes is seen in diseases such as Alzheimer disease (AD). This association will be discussed in the last section of this chapter. In this review we will describe motor and cognitive deficits in behavior due to aging, and show how these deficits are related to increased vulnerability to oxidative stress, inflammation or signaling. Importantly, using muscarinic receptors as examples, we will also try to show that the sensitivity to these insults may be differentially expressed among neurotransmitter receptor subtypes.  相似文献   

17.
Neurochemical Research - Chronic dietary long-chain polyunsaturated fatty acids (PUFAs) deficiency may lead to changes in cortex and hippocampus neuronal membrane phospholipids, and may be linked...  相似文献   

18.
目的:研究芪卫颗粒对2型糖尿病大鼠肾脏氧化应激和病理的影响。方法:先诱导2型糖尿病大鼠模型50只,按照随机数字表法将大鼠分为A组和B组,每组25只,另选取25只正常鼠为对照组;A组给予芪卫颗粒,B组给予a-硫辛酸,均治疗3个月,检测3组血糖(BG)、糖化血红蛋白(Hb A1c)、血脂、肾功能指标、超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽氧化物酶(GSH-Px),并观察肾脏的病理变化。结果:A组BG、Hb A1c和血脂水平均显著优于B组,差异有统计学意义(P0.05);A组肾功能指标与对照组比较无统计学意义(P0.05),A组肾功能指标显著优于B组,差异有统计学意义(P0.05);A组SOD、MDA和GSH-Px均优于B组,差异有统计学意义(P0.05);A组肾小球病理变化显著优于B组,差异有统计学意义(P0.05)。结论:芪卫颗粒对2型糖尿病大鼠肾脏氧化应激有一定抑制作用,能改善肾功能和病理。  相似文献   

19.
Markers of oxidative stress were measured in blood samples of 338 subjects (965 observations): Alzheimer’s, vascular dementia, diabetes (type II) superimposed to dementias, Parkinson’s disease and controls. Patients showed increased thiobarbituric acid reactive substances (+21%; P < 0.05), copper-zinc superoxide dismutase (+64%; P < 0.001) and decreased antioxidant capacity (−28%; P < 0.001); pairs of variables resulted linearly related across groups (P < 0.001). Catalase and glutathione peroxidase, involved in discrimination between diseases, resulted non-significant. When diabetes is superimposed with dementias, changes resulted less marked but significant. Also, superoxide dismutase resulted not linearly correlated with any other variable or age-related (pure Alzheimer’s peaks at 70 years, P < 0.001). Systemic oxidative stress was significantly associated (P ≪ 0.001) with all diseases indicating a disbalance in peripheral/adaptive responses to oxidative disorders through different free radical metabolic pathways. While other changes—methionine cycle, insulin correlation—are also associated with dementias, the responses presented here show a simple linear relation between prooxidants and antioxidant defenses.  相似文献   

20.
Oxidative stress is thought to be involved in lead-induced toxicity. The aim of this study was to investigate the possible protective role of naringenin on lead-induced oxidative stress in the liver and kidney of rats. In the present investigation, lead acetate (500 mg Pb/L) was administered orally for 8 weeks to induce hepatotoxicity and nephrotoxicity. The levels of hepatic and renal markers such as alanine aminotransferase, aspartate aminotransferase, urea, uric acid, and creatinine were significantly (P < 0.05) increased following lead acetate administration. Lead-induced oxidative stress in liver and kidney tissue was indicated by a significant (P < 0.05) increase in the level of maleic dialdehyde and decreased levels of reduced glutathione, superoxide dismutase, catalase, and glutathione peroxidase. Naringenin markedly attenuated lead-induced biochemical alterations in serum, liver, and kidney tissues (P < 0.05). The present study suggests that naringenin shows antioxidant activity and plays a protective role against lead-induced oxidative damage in the liver and kidney of rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号