首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Crohn’s disease, an incurable chronic inflammatory bowel disease, has been attributed to both genetic predisposition and environmental factors. A dysbiosis of the gut microbiota, observed in numerous patients but also in at least one hundred unaffected first-degree relatives, was proposed to have a causal role. Gut microbiota β-D-glucuronidases (EC 3.2.1.33) hydrolyse β-D-glucuronate from glucuronidated compounds. They include a GUS group, that is homologous to the Escherichia coli GusA, and a BG group, that is homologous to metagenomically identified H11G11 BG and has unidentified natural substrates. H11G11 BG is part of the functional core of the human gut microbiota whereas GusA, known to regenerate various toxic products, is variably found in human subjects. We investigated potential risk markers for Crohn’s disease using DNA-sequence-based exploration of the β-D-glucuronidase loci (GUS or Firmicute H11G11-BG and the respective co-encoded glucuronide transporters). Crohn’s disease-related microbiomes revealed a higher frequency of a C7D2 glucuronide transporter (12/13) compared to unrelated healthy subjects (8/32). This transporter was in synteny with the potential harmful GUS β-D-glucuronidase as only observed in a Eubacterium eligens plasmid. A conserved NH2-terminal sequence in the transporter (FGDFGND motif) was found in 83% of the disease-related subjects and only in 12% of controls. We propose a microbiota-pathology hypothesis in which the presence of this unique β-glucuronidase locus may contribute to an increase risk for Crohn’s disease.  相似文献   

2.
3.
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.  相似文献   

4.
Chasing genes in Alzheimer’s and Parkinson’s disease   总被引:4,自引:0,他引:4  
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links.  相似文献   

5.
This review critically examines progress in understanding the link between Alzheimer’s disease (AD) molecular pathogenesis and behavior, with an emphasis on the impact of amyloid-β. We present the argument that the AD research field requires more multifaceted analyses into the impacts of Alzheimer’s pathogenesis which combine simultaneous molecular-, circuit-, and behavior-level approaches. Supporting this argument is a review of particular research utilizing similar, “systems-level” methods in mouse models of AD. Related to this, a critique of common physiological and behavioral models is made—highlighting the likely usefulness of more refined and specific tools in understanding the relationship between candidate molecular pathologies and behavioral dysfunction. Finally, we propose challenges for future research which, if met, may greatly extend our current understanding of how AD molecular pathology impacts neural network function and behavior and possibly may lead to refinements in disease therapeutics.  相似文献   

6.
7.
Disbalance of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as multisystem atrophy, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, Wilson-Konovalov disease, Alzheimer’s disease, and Parkinson’s disease. Among these, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most frequent age-related neurodegenerative pathologies with disorders in Zn2+ and Cu2+ homeostasis playing a pivotal role in the mechanisms of pathogenesis. In this review we generalized and systematized current literature data concerning this problem. The interactions of Zn2+ and Cu2+ with amyloid precursor protein (APP), β-amyloid (Abeta), tau-protein, metallothioneins, and GSK3β are considered, as well as the role of these interactions in the generation of free radicals in AD and PD. Analysis of the literature suggests that the main factors of AD and PD pathogenesis (oxidative stress, structural disorders and aggregation of proteins, mitochondrial dysfunction, energy deficiency) that initiate a cascade of events resulting finally in the dysfunction of neuronal networks are mediated by the disbalance of Zn2+ and Cu2+.  相似文献   

8.
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer’s disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE–Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.  相似文献   

9.
10.
Alzheimer’s disease (AD) is characterized by cognitive impairment, progressive neurodegeneration, and Aβ accumulation. Aβ oligomers can lead to synaptic damage via alterations in glutamate receptors and excitotoxicity, as well as mitochondrial dysfunction. AD is associated with various biological indicators, including (1) predisposing factors such as genetic risk factors, (2) laboratory markers such as Aβ and tau protein, and (3) diagnostic markers such as MRI and PET findings. However, these markers are not confirmed, invasive, or expensive. In the present study, we employed nuclear magnetic resonance (NMR) methods that are inexpensive, time-efficient, and can be performed using samples obtained from various easily accessible sources such as cerebrospinal fluid, plasma, and peripheral tissue, thus highlighting the clinical utility of this approach. NMR analyses of blood metabolites showed that glutamine, glutamate, leucine, oxaloacetate, aspartate, isoleucine, and 3-hydroxyisovalerate are increased in patients with AD compared with control individuals. These metabolites seem to be related to mitochondrial dysfunction. Our data indicated that 3-hydroxyisovalerate, which is linked to known pathologic processes associated with mitochondrial dysfunction and accelerated neurodegeneration, was increased in the blood samples of patients with AD.  相似文献   

11.
Periodontitis is common in the elderly and may become more common in Alzheimer’s disease because of a reduced ability to take care of oral hygiene as the disease progresses. Elevated antibodies to periodontal bacteria are associated with an increased systemic pro-inflammatory state. Elsewhere raised serum pro-inflammatory cytokines have been associated with an increased rate of cognitive decline in Alzheimer’s disease. We hypothesized that periodontitis would be associated with increased dementia severity and a more rapid cognitive decline in Alzheimer’s disease. We aimed to determine if periodontitis in Alzheimer’s disease is associated with both increased dementia severity and cognitive decline, and an increased systemic pro inflammatory state. In a six month observational cohort study 60 community dwelling participants with mild to moderate Alzheimer’s Disease were cognitively assessed and a blood sample taken for systemic inflammatory markers. Dental health was assessed by a dental hygienist, blind to cognitive outcomes. All assessments were repeated at six months. The presence of periodontitis at baseline was not related to baseline cognitive state but was associated with a six fold increase in the rate of cognitive decline as assessed by the ADAS-cog over a six month follow up period. Periodontitis at baseline was associated with a relative increase in the pro-inflammatory state over the six month follow up period. Our data showed that periodontitis is associated with an increase in cognitive decline in Alzheimer’s Disease, independent to baseline cognitive state, which may be mediated through effects on systemic inflammation.  相似文献   

12.
Alzheimer’s disease (AD) is characterized by progressive memory loss and cognitive function deficits. There are two major pathological hallmarks that contribute to the pathogenesis of AD which are the presence of extracellular amyloid plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Despite extensive research that has been done on Aβ in the last two decades, therapies targeting Aβ were not very fruitful at treating AD as the efficacy of Aβ therapies observed in animal models is not reflected in human clinical trials. Hence, tau-directed therapies have received tremendous attention as the potential treatments for AD. Tauopathies are closely correlated with dementia and immunotherapy has been effective at reducing tau pathology and improving cognitive deficits in animal models. Thus, in this review article, we discussed the pathological mechanism of tau proteins, the key factors contributing to tauopathies, and therapeutic approaches for tauopathies in AD based on the recent progress in tau-based research.  相似文献   

13.
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.  相似文献   

14.
15.
16.
Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by the clinical triad: tremor, akinesia and rigidity. Several studies have suggested that PD patients show disturbances in olfaction at the earliest onset of the disease. The fruit fly Drosophila melanogaster is becoming a powerful model organism to study neurodegenerative diseases. We sought to use this system to explore olfactory dysfunction, if any, in PINK1 mutants, which is a model for PD. PINK1 mutants display many important diagnostic symptoms of the disease such as akinetic motor behavior. In the present study, we describe for the first time, to the best of our knowledge, neurophysiological and neuroanatomical results concerning the olfactory function in PINK1 mutant flies. Electroantennograms were recorded in response to synthetic and natural volatiles (essential oils) from groups of PINK1 mutant adults at three different time points in their life cycle: one from 3–5 day-old flies, from 15–20 and from 27–30 days. The results obtained were compared with the same age-groups of wild type flies. We found that mutant adults showed a decrease in the olfactory response to 1-hexanol, α-pinene and essential oil volatiles. This olfactory response in mutant adults decreased even more as the flies aged. Immunohistological analysis of the antennal lobes in these mutants revealed structural abnormalities, especially in the expression of Bruchpilot protein, a marker for synaptic active zones. The combination of electrophysiological and morphological results suggests that the altered synaptic organization may be due to a neurodegenerative process. Our results indicate that this model can be used as a tool for understanding PD pathogensis and pathophysiology. These results help to explore the potential of using olfaction as a means of monitoring PD progression and developing new treatments.  相似文献   

17.
Studies of neurodegenerative disorders attract much attention of the world scientific community due to increasing dissemination of Alzheimer’s disease. The reason for such pathologies consists in transition of a “healthy” molecule or peptide from its native conformation into a very stable “pathological” form. During this process, molecules existing in the “pathological” conformation aggregate and form amyloid fibrils that can undergo an uncontrolled increase. Novel knowledge is required on sporadic forms of Alzheimer’s disease, on the nature of triggering mechanisms of the conformational transitions of beta-amyloid fragments from normally functioning proteins into new structure, nano-beta-amyloids, that escape of neuronal and whole-body control resulted in the loss of neurons. This review summarized results of studies on the formation of amyloid fibrils and their role in pathogenesis of amyloid diseases.  相似文献   

18.
19.
Various innovative diagnostic methods for Alzheimer’s disease (AD) have been developed in view of the increasing preva-lence and consequences of later-life dementia. Biomarkers in cerebrospinal fluid (CSF) and blood for AD are primarily based on the detection of components derived from amyloid plaques and neurofibrillary tangles (NFTs). Published reports on CSF and blood biomarkers in AD indicate that although biomarkers in body fluids may be utilized in the clinical diagnosis of AD, there are no specific markers that permit accurate and reliable diagnosis of early-stage AD or the monitoring of disease pro-gression.  相似文献   

20.
Autophagy is an essential degradation pathway in clearing abnormal protein aggregates in mammalian cells and is responsible for protein homeostasis and neuronal health. Several studies have shown that autophagy deficits occurred in early stage of Alzheimer’s disease (AD). Autophagy plays an important role in generation and metabolism of β-amyloid (Aβ), assembling of tau and thus its malfunction may lead to the progress of AD. By considering the above evidences, autophagy may be a new target in developing drugs for AD. So far, a number of mammalian target of rapamycin (mTOR)-dependent and independent autophagy modulators have been identified to have positive effects in AD treatment. In this review, we summarized the latest progress supporting the role for autophagy deficits in AD and the potential therapeutic effects of autophagy modulators in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号