首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nasal epithelium is continuously subjected to wall shear stresses (WSS) induced by respiratory airflows. An in vitro experimental model was developed to expose nasal epithelial cells cultured under air-liquid interface conditions to steady airflow-induced WSS. Mucus secretion from epithelial goblet cells was quantified using an enzyme-linked lectinosorbent assay, and modifications of the cytoskeletal structure were qualitatively evaluated from fluorescent stains of actin and β-tubulin fibers. The results show increased mucus secretion from cells subjected to WSS of 0.1 and 1.0 dyne/cm2 for more than 15 min in comparison with unstressed cells. The integrity levels of β-tubulin fibers were significantly lower in cells subjected to WSS than in unstressed cells. The increased mucus secretion in response to WSS was approximately the same in Taxol-free and Taxol-treated cultures, which indicates that there is no direct connection between β-tubulin fragmentation and mucus secretion. The stressed cells regained their normal cytoskeletal appearance 24 h after the exposure to WSS. The results of this study suggest that WSS have an important role in the mechanical regulation of the nasal surface epithelium function.  相似文献   

2.
Interstitial flow is an important regulator of various cell behaviors both in vitro and in vivo, yet the forces that fluid flow imposes on cells embedded in a 3D extracellular matrix (ECM), and the effects of matrix architecture on those forces, are not well understood. Here, we demonstrate how fiber alignment can affect the shear and pressure forces on the cell and ECM. Using computational fluid dynamics simulations, we show that while the solutions of the Brinkman equation accurately estimate the average fluid shear stress and the drag forces on a cell within a 3D fibrous medium, the distribution of shear stress on the cellular surface as well as the peak shear stresses remain intimately related to the pericellular fiber architecture and cannot be estimated using bulk-averaged properties. We demonstrate that perpendicular fiber alignment of the ECM yields lower shear stress and pressure forces on the cells and higher stresses on the ECM, leading to decreased permeability, while parallel fiber alignment leads to higher stresses on cells and increased permeability, as compared to a cubic lattice arrangement. The Spielman–Goren permeability relationships for fibrous media agreed well with CFD simulations of flow with explicitly considered fibers. These results suggest that the experimentally observed active remodeling of ECM fibers by fibroblasts under interstitial flow to a perpendicular alignment could serve to decrease the shear and drag forces on the cell.  相似文献   

3.
Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature, suggesting high shear stress-regulation of angiogenic activity is lacking in many vessels, thereby driving tumor angiogenesis.  相似文献   

4.
A multi-well fluid loading (MFL) system was developed to deliver oscillatory subphysiologic to supraphysiologic fluid shear stresses to cell monolayers in vitro using standard multi-well culture plates. Computational fluid dynamics modeling with fluid-structure interactions was used to quantify the squeeze film fluid flow between an axially displaced piston and the well plate surface. Adjusting the cone angle of the piston base modulated the fluid pressure, velocity, and shear stress magnitudes. Modeling results showed that there was near uniform fluid shear stress across the well with a linear drop in pressure across the radius of the well. Using the MFL system, RAW 264.7 osteoclastic cells were exposed to oscillatory fluid shear stresses of 0, 0.5, 1.5, 4, 6, and 17 Pa. Cells were loaded 1 h per day at 1 Hz for two days. Compared to sub-physiologic and physiologic levels, supraphysiologic oscillatory fluid shear induced upregulation of osteoclastic activity as measured by tartrate-resistant acid phosphatase activity and formation of mineral resorption pits. Cell number remained constant across all treatment groups.  相似文献   

5.
Epithelial ovarian cancers (EOCs) are the leading cause of death from gynecological malignancy in Western societies. Despite advances in surgical treatments and improved platinum-based chemotherapies, there has been little improvement in EOC survival rates for more than four decades 1,2. Whilst stage I tumors have 5-year survival rates >85%, survival rates for stage III/IV disease are <40%. Thus, the high rates of mortality for EOC could be significantly decreased if tumors were detected at earlier, more treatable, stages 3-5. At present, the molecular genetic and biological basis of early stage disease development is poorly understood. More specifically, little is known about the role of the microenvironment during tumor initiation; but known risk factors for EOCs (e.g. age and parity) suggest that the microenvironment plays a key role in the early genesis of EOCs. We therefore developed three-dimensional heterotypic models of both the normal ovary and of early stage ovarian cancers. For the normal ovary, we co-cultured normal ovarian surface epithelial (IOSE) and normal stromal fibroblast (INOF) cells, immortalized by retrovrial transduction of the catalytic subunit of human telomerase holoenzyme (hTERT) to extend the lifespan of these cells in culture. To model the earliest stages of ovarian epithelial cell transformation, overexpression of the CMYC oncogene in IOSE cells, again co-cultured with INOF cells. These heterotypic models were used to investigate the effects of aging and senescence on the transformation and invasion of epithelial cells. Here we describe the methodological steps in development of these three-dimensional model; these methodologies aren''t specific to the development of normal ovary and ovarian cancer tissues, and could be used to study other tissue types where stromal and epithelial cell interactions are a fundamental aspect of the tissue maintenance and disease development.  相似文献   

6.
7.
ObjectTo explore the role of microRNA-21 in human epithelial ovarian cancer (EOC).MethodsWe used RT-PCR to test the expressions of miRNA-21 in EOC cells and normal ovarian epithelial cells, as well as the tumor samples and the tumor-adjacent normal tissues. The vector of LV3 pGLV-H1-GFP-miR-21 was used to decrease the level expression of endogenous miR-21 in cells. Further, we investigated how miR-21 affected the biological events of EOC through determining the changes in proliferation, cycle and invasion of EOC cells, and measured the tumorigenesis in xenograft models. The association between phosphatase and tensin homolog deleted on chromosome ten (PTEN) and miR-21 were tested by RT-PCR. Next, siRNA was used to knockdown PTEN gene which help us to assess the functional association between miR-21 and PTEN in vivo and in vitro.ResultsIn EOC cell lines and human epithelial ovarian tumor cells, we found that miR-21 altered the biological features of EOC cells, including suppression of proliferation and invasion and arrest of cell cycle, and also resulted in a decrease in tumorigenesis in the in vitro xenograft models. The association between PTEN and miR-21 was confirmed in previous research. From our results, the down-regulation of PTEN gave rise to the miR-21 decrease, regardless of the cells or tissues.ConclusionThe suppression of microRNA-21 inhibits the progression of EOC profoundly. In EOC, miR-21 is negatively correlated with the expression of PTEN gene.  相似文献   

8.
Samples of CRL-8018 hybridoma cultures were subjected to well-defined laminar shear in a Couette viscometer. Exposure of the samples to increasing levels of shear stress (0–50 dynes cm−2 for 10 min) or times of exposure to shear (50 dynes cm−2 for 0–10 min) resulted in higher levels of cellular damage and death. Cell death in the viscometer was shown to exhibit trends similar to cell death caused by excessive agitation in spinner flasks, suggesting that viscometric shear can be used to model in a more reproducible way some of the fluid mechanical aspects of damage to cells caused by agitation. Cells cultured with low levels of fluid stresses (T-flask and slowly stirred spinner cultures) were more sensitive to shear than cells from rapidly agitated cultures. Also, cells from either the lag or stationary phases of batch cultures were more sensitive to mechanical damage than exponentially growing cells. Accumulation of ammonia and changes in pH of the batch culture can contribute to this increase in shear sensitivity.  相似文献   

9.
Interstitial fluid flow has been shown to affect the organization and behavior of cells in 3D environments in vivo and in vitro, yet the forces driving such responses are not clear. Due to the complex architecture of the extracellular matrix (ECM) and the difficulty of measuring fluid flow near cells embedded in it, the levels of shear stress experienced by cells in this environment are typically estimated using bulk-averaged matrix parameters such as hydraulic permeability. While this is useful for estimating average stresses, it cannot yield insight into how local matrix fiber architecture-which is cell-controlled in the immediate pericellular environment-affects the local stresses imposed on the cell surface. To address this, we used computational fluid dynamics to study flow through an idealized mesh constructed of a cubic lattice of fibers simulating a typical in vitro collagen gel. We found that, in such high porosity matrices, the fibers strongly affect the flow fields near the cell, with peak shear stresses up to five times higher than those predicted by the Brinkman equation. We also found that minor remodeling of the fibers near the cell surface had major effects on the shear stress profile on the cell. These findings demonstrate the importance of fiber architecture to the fluid forces on a cell embedded in a 3D matrix, and also show how small modifications in the local ECM can lead to large changes in the mechanical environment of the cell.  相似文献   

10.
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.  相似文献   

11.
Ovarian cancer is the fifth leading cause of cancer related deaths in the United States1. Despite a positive initial response to therapies, 70 to 90 percent of women with ovarian cancer develop new metastases, and the recurrence is often fatal2. It is, therefore, necessary to understand how secondary metastases arise in order to develop better treatments for intermediate and late stage ovarian cancer. Ovarian cancer metastasis occurs when malignant cells detach from the primary tumor site and disseminate throughout the peritoneal cavity. The disseminated cells can form multicellular clusters, or spheroids, that will either remain unattached, or implant onto organs within the peritoneal cavity3 (Figure 1, Movie 1). All of the organs within the peritoneal cavity are lined with a single, continuous, layer of mesothelial cells4-6 (Figure 2). However, mesothelial cells are absent from underneath peritoneal tumor masses, as revealed by electron micrograph studies of excised human tumor tissue sections3,5-7 (Figure 2). This suggests that mesothelial cells are excluded from underneath the tumor mass by an unknown process. Previous in vitro experiments demonstrated that primary ovarian cancer cells attach more efficiently to extracellular matrix than to mesothelial cells8, and more recent studies showed that primary peritoneal mesothelial cells actually provide a barrier to ovarian cancer cell adhesion and invasion (as compared to adhesion and invasion on substrates that were not covered with mesothelial cells)9,10. This would suggest that mesothelial cells act as a barrier against ovarian cancer metastasis. The cellular and molecular mechanisms by which ovarian cancer cells breach this barrier, and exclude the mesothelium have, until recently, remained unknown. Here we describe the methodology for an in vitro assay that models the interaction between ovarian cancer cell spheroids and mesothelial cells in vivo (Figure 3, Movie 2). Our protocol was adapted from previously described methods for analyzing ovarian tumor cell interactions with mesothelial monolayers8-16, and was first described in a report showing that ovarian tumor cells utilize an integrin –dependent activation of myosin and traction force to promote the exclusion of the mesothelial cells from under a tumor spheroid17. This model takes advantage of time-lapse fluorescence microscopy to monitor the two cell populations in real time, providing spatial and temporal information on the interaction. The ovarian cancer cells express red fluorescent protein (RFP) while the mesothelial cells express green fluorescent protein (GFP). RFP-expressing ovarian cancer cell spheroids attach to the GFP-expressing mesothelial monolayer. The spheroids spread, invade, and force the mesothelial cells aside creating a hole in the monolayer. This hole is visualized as the negative space (black) in the GFP image. The area of the hole can then be measured to quantitatively analyze differences in clearance activity between control and experimental populations of ovarian cancer and/ or mesothelial cells. This assay requires only a small number of ovarian cancer cells (100 cells per spheroid X 20-30 spheroids per condition), so it is feasible to perform this assay using precious primary tumor cell samples. Furthermore, this assay can be easily adapted for high throughput screening.  相似文献   

12.
Activation of the PI3K/Akt pathway, a critical step for survival in cancer cells is often associated with decreased sensitivity to several chemotherapeutic drugs. PIK3CA gene amplification is observed in 16–24% of epithelial ovarian cancer (EOC) patients in conjunction with p53 mutations. A 900 bp long PIK3CA promoter is shown to be negatively regulated by p53 in ovarian surface epithelial cells but the consequence of chemotherapeutic drug treatments on this promoter in ovarian cancer cells is largely unknown. We aim to study the modulation of this promoter by cisplatin using an improved fusion reporter in ovarian cancer cells and tumor xenografts by non-invasive imaging approach. A PIK3CA sensor was developed using a bi-fusion reporter from a newly constructed library of bi- and tri-fusion vectors comprising of two mutant far red fluorescent proteins (mcherry/mch and tdTomato/tdt), a mutant firefly luciferase (fluc2), and a PET reporter protein (ttk). In vivo imaging of mice implanted with 293T cells transiently expressing these bi- and tri-fusion reporters along with respective controls revealed comparable activity of each reporter in the fusion background and fluc2-tdt as the most sensitive one. Repression of the PIK3CA sensor by drugs was inversely proportional to cellular p53 level in a germline (PA1) and in an EOC (A2780) cell line but not in a p53 deficient EOC (SKOV3) cell line. Bioluminescence imaging of tumor xenografts stably expressing the PIK3CA sensor in PA1 and A2780 cells exhibited attenuating activity without any change in SKOV3 tumors expressing the PIK3CA sensor after cisplatin treatment. Sequential mutation at p53 binding sites showed gradual increase in promoter activity and decreased effects of the drugs. These newly developed PIK3CA-fluc2-tdt and the mutant reporter sensors thus would be extremely useful for screening new drugs and for functional assessment of PIK3CA expression from intact cells to living subjects.  相似文献   

13.
Cells with sphere forming capacity, spheroid cells, are present in the malignant ascites of patients with epithelial ovarian cancer (EOC) and represent a significant impediment to efficacious treatment due to their putative role in progression, metastasis and chemotherapy resistance. The exact mechanisms that underlie EOC metastasis and drug resistance are not clear. Understanding the biology of sphere forming cells may contribute to the identification of novel therapeutic opportunities for metastatic EOC. Here we generated spheroid cells from human ovarian cancer cell lines and primary ovarian cancer. Xenoengraftment of as few as 2000 dissociated spheroid cells into immune-deficient mice allowed full recapitulation of the original tumor, whereas >105 parent tumor cells remained non-tumorigenic. The spheroid cells were found to be enriched for cells with cancer stem cell-like characteristics such as upregulation of stem cell genes, self-renewal, high proliferative and differentiation potential, and high aldehyde dehydrogenase (ALDH) activity. Furthermore, spheroid cells were more aggressive in growth, migration, invasion, scratch recovery, clonogenic survival, anchorage-independent growth, and more resistant to chemotherapy in vitro. 13C-glucose metabolic studies revealed that spheroid cells route glucose predominantly to anaerobic glycolysis and pentose cycle to the detriment of re-routing glucose for anabolic purposes. These metabolic properties of sphere forming cells appear to confer increased resistance to apoptosis and contribute to more aggressive tumor growth. Collectively, we demonstrated that spheroid cells with cancer stem cell-like characteristics contributed to tumor generation, progression and chemotherapy resistance. This study provides insight into the relationship between tumor dissemination and metabolic attributes of human cancer stem cells and has clinical implications for cancer therapy.  相似文献   

14.
A third of patients with epithelial ovarian cancer (EOC) present ascites. The cellular fraction of ascites often consists of EOC cells, lymphocytes, and mesothelial cells, whereas the acellular fraction contains cytokines and angiogenic factors. Clinically, the presence of ascites correlates with intraperitoneal and retroperitoneal tumor spread. We have used OV-90, a tumorigenic EOC cell line derived from the malignant ascites of a chemonaive ovarian cancer patient, as a model to assess the effect of ascites on migration potential using an in vitro wound-healing assay. A recent report of an invasion assay described the effect of ascites on the invasion potential of the OV-90 cell line. Ascites sampled from 31 ovarian cancer patients were tested and compared with either 5% fetal bovine serum or no serum for their nonstimulatory or stimulatory effect on the migration potential of the OV-90 cell line. A supervised analysis of data generated by the Affymetrix HG-U133A GeneChip identified differentially expressed genes from OV-90 cells exposed to ascites that had either a nonstimulatory or a stimulatory effect on migration. Ten genes (IRS2, CTSD, NRAS, MLXIP, HMGCR, LAMP1, ETS2, NID1, SMARCD1, and CD44) were upregulated in OV-90 cells exposed to ascites, allowing a nonstimulatory effect on cell migration. These findings were validated by quantitative polymerase chain reaction. In addition, the gene expression of IRS2 and MLXIP each correlated with prognosis when their expression was assessed in an independent set of primary cultures established from ovarian ascites. This study revealed novel candidates that may play a role in ovarian cancer cell migration.  相似文献   

15.
A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.  相似文献   

16.
In bone tissue engineering experiments, fluid-induced shear stress is able to stimulate cells to produce mineralised extracellular matrix (ECM). The application of shear stress on seeded cells can for example be achieved through bioreactors that perfuse medium through porous scaffolds. The generated mechanical environment (i.e. wall shear stress: WSS) within the scaffolds is complex due to the complexity of scaffold geometry. This complexity has so far prevented setting an optimal loading (i.e. flow rate) of the bioreactor to achieve an optimal distribution of WSS for stimulating cells to produce mineralised ECM. In this study, we demonstrate an approach combining computational fluid dynamics (CFD) and mechano-regulation theory to optimise flow rates of a perfusion bioreactor and various scaffold geometries (i.e. pore shape, porosity and pore diameter) in order to maximise shear stress induced mineralisation. The optimal flow rates, under which the highest fraction of scaffold surface area is subjected to a wall shear stress that induces mineralisation, are mainly dependent on the scaffold geometries. Nevertheless, the variation range of such optimal flow rates are within 0.5–5 mL/min (or in terms of fluid velocity: 0.166–1.66 mm/s), among different scaffolds. This approach can facilitate the determination of scaffold-dependent flow rates for bone tissue engineering experiments in vitro, avoiding performing a series of trial and error experiments.  相似文献   

17.
The aortic valve (AV) achieves unidirectional blood flow between the left ventricle and the aorta. Although hemodynamic stresses have been shown to regulate valvular biology, the native wall shear stress (WSS) experienced by AV leaflets remains largely unknown. The objective of this study was to quantify computationally the macro-scale leaflet WSS environment using fluid–structure interaction modeling. An arbitrary Lagrangian–Eulerian approach was implemented to predict valvular flow and leaflet dynamics in a three-dimensional AV geometry subjected to physiologic transvalvular pressure. Local WSS characteristics were quantified in terms of temporal shear magnitude (TSM), oscillatory shear index (OSI) and temporal shear gradient (TSG). The dominant radial WSS predicted on the leaflets exhibited high amplitude and unidirectionality on the ventricularis (TSM>7.50 dyn/cm2, OSI < 0.17, TSG>325.54 dyn/cm2 s) but low amplitude and bidirectionality on the fibrosa (TSM < 2.73 dyn/cm2, OSI>0.38, TSG < 191.17 dyn/cm2 s). The radial WSS component computed in the leaflet base, belly and tip demonstrated strong regional variability (ventricularis TSM: 7.50–22.32 dyn/cm2, fibrosa TSM: 1.26–2.73 dyn/cm2). While the circumferential WSS exhibited similar spatially dependent magnitude (ventricularis TSM: 1.41–3.40 dyn/cm2, fibrosa TSM: 0.42–0.76 dyn/cm2) and side-specific amplitude (ventricularis TSG: 101.73–184.43 dyn/cm2 s, fibrosa TSG: 41.92–54.10 dyn/cm2 s), its temporal variations were consistently bidirectional (OSI>0.25). This study provides new insights into the role played by leaflet–blood flow interactions in valvular function and critical hemodynamic stress data for the assessment of the hemodynamic theory of AV disease.  相似文献   

18.
The pattern of ovarian cancer metastasis is markedly different from that of most other epithelial tumors, because it rarely spreads hematogenously. Instead, ovarian cancer cells exfoliated from the primary tumor are carried by peritoneal fluid to metastatic sites within the peritoneal cavity. These sites, most notably the abdominal peritoneum and omentum, are organs covered by a mesothelium-lined surface. To investigate the processes of ovarian cancer dissemination, we assembled a complex three-dimensional culture system that reconstructs the lining of the peritoneal cavity in vitro. Primary human fibroblasts and mesothelial cells were isolated from human omentum. The fibroblasts were then mixed with extracellular matrix and covered with a layer of the primary human mesothelial cells to mimic the peritoneal and omental surfaces encountered by metastasizing ovarian cancer cells. The resulting organotypic model is, as shown, used to examine the early steps of ovarian cancer dissemination, including cancer cell adhesion, invasion, and proliferation. This model has been used in a number of studies to investigate the role of the microenvironment (cellular and acellular) in early ovarian cancer dissemination. It has also been successfully adapted to high throughput screening and used to identify and test inhibitors of ovarian cancer metastasis.  相似文献   

19.
BACKGROUND: Restenosis after stent implantation varies with stent design. Alterations in secondary flow patterns and wall shear stress (WSS) can modulate intimal hyperplasia via their effects on platelet and inflammatory cell transport toward the wall, as well as direct effects on the endothelium. METHOD OF APPROACH: Detailed flow characteristics were compared by estimating the WSS in the near-strut region of realistic stent designs using three-dimensional computational fluid dynamics (CFD), under pulsatile high and low flow conditions. The stent geometry employed was characterized by three geometric parameters (axial strut pitch, strut amplitude, and radius of curvature), and by the presence or lack of the longitudinal connector. RESULTS: Stagnation regions were localized around stent struts. The regions of low WSS are larger distal to the strut. Under low flow conditions, the percentage restoration of mean axial WSS between struts was lower than that for the high flow by 10-12%. The largest mean transverse shear stresses were 30-50% of the largest mean axial shear stresses. The percentage restoration in WSS in the models without the longitudinal connector was as much as 11% larger than with the connector The mean axial WSS restoration between the struts was larger for the stent model with larger interstrut spacing. CONCLUSION: The results indicate that stent design is crucial in determining the fluid mechanical environment in an artery. The sensitivity of flow characteristics to strut configuration could be partially responsible for the dependence of restenosis on stent design. From a fluid dynamics point of view, interstrut spacing should be larger in order to restore the disturbed flow; struts should be oriented to the flow direction in order to reduce the area of flow recirculation. Longitudinal connectors should be used only as necessary, and should be parallel to the axis. These results could guide future stent designs toward reducing restenosis.  相似文献   

20.
An analytical model of the fluid/cell mechanical interaction was developed. The interfacial shear stress, due to the coupling between the fluid and the cell deformation, was characterized by a new dimensionless number Nfs. For Nfs above a critical value, the fluid/cell interaction had a damping effect on the interfacial shear stress. Conversely, for Nfs below this critical value, interfacial shear stress was amplified. As illustration, the role of the dynamic fluid/cell mechanical coupling was studied in a specific biological situation involving cells seeded in a bone scaffold. For the particular bone scaffold chosen, the dimensionless number Nfs was higher than the critical value. In this case, the dynamic shear stress at the fluid/cell interface is damped for increasing excitation frequency. Interestingly, this damping effect is correlated to the pore diameter of the scaffold, furnishing thus target values in the design of the scaffold. Correspondingly, an efficient cell stimulation might be achieved with a scaffold of pore size larger than 300 μm as no dynamic damping effect is likely to take place. The analytical model proposed in this study, while being a simplification of a fluid/cell mechanical interaction, brings complementary insights to numerical studies by analyzing the effect of different physical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号