首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Western equine encephalitis virus (WEEV; Alphavirus) is a mosquito-borne virus that can cause severe encephalitis in humans and equids. Previous studies have shown that intranasal infection of outbred CD-1 mice with the WEEV McMillan (McM) strain result in high mortality within 4 days of infection. Here in vivo and ex vivo bioluminescence (BLM) imaging was applied on mice intranasally infected with a recombinant McM virus expressing firefly luciferase (FLUC) to track viral neuroinvasion by FLUC detection and determine any correlation between BLM and viral titer. Immunological markers of disease (MCP-1 and IP-10) were measured and compared to wild type virus infection. Histopathology was guided by corresponding BLM images, and showed that neuroinvasion occurred primarily through cranial nerves, mainly in the olfactory tract. Olfactory bulb neurons were initially infected with subsequent spread of the infection into different regions of the brain. WEEV distribution was confirmed by immunohistochemistry as having marked neuronal infection but very few infected glial cells. Axons displayed infection patterns consistent with viral dissemination along the neuronal axis. The trigeminal nerve served as an additional route of neuroinvasion showing significant FLUC expression within the brainstem. The recombinant virus WEEV.McM.FLUC had attenuated replication kinetics and induced a weaker immunological response than WEEV.McM but produced comparable pathologies. Immunohistochemistry staining for FLUC and WEEV antigen showed that transgene expression was present in all areas of the CNS where virus was observed. BLM provides a quantifiable measure of alphaviral neural disease progression and a method for evaluating antiviral strategies.  相似文献   

2.
3.
Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species. In an effort to develop new tools for a broader response to outbreaks, we designed and tested a novel alphavirus vaccine comprised of cationic lipid nucleic acid complexes (CLNCs) and the ectodomain of WEEV E1 protein (E1ecto). Interestingly, we found that the CLNC component, alone, had therapeutic efficacy, as it increased survival of CD-1 mice following lethal WEEV infection. Immunization with the CLNC-WEEV E1ecto mixture (lipid-antigen-nucleic acid complexes [LANACs]) using a prime-boost regimen provided 100% protection in mice challenged with WEEV subcutaneously, intranasally, or via mosquito. Mice immunized with LANACs mounted a strong humoral immune response but did not produce neutralizing antibodies. Passive transfer of serum from LANAC E1ecto-immunized mice to nonimmune CD-1 mice conferred protection against WEEV challenge, indicating that antibody is sufficient for protection. In addition, the LANAC E1ecto immunization protocol significantly increased survival of mice following intranasal or subcutaneous challenge with EEEV. In summary, our LANAC formulation has therapeutic potential and is an effective vaccine strategy that offers protection against two distinct species of alphavirus irrespective of the route of infection. We discuss plausible mechanisms as well the potential utility of our LANAC formulation as a pan-alphavirus vaccine.  相似文献   

4.
Two western equine encephalomyelitis virus (WEEV) strains have been isolated in China. Our previous studies have verified that the mosquito Culex pipiens pallens Coquillett (Diptera: Culicidae) infected with WEEV was capable of transmitting this arbovirus, but it was not clear how the sequential multiplication and spread of virus occurred within the mosquito. In this study, we observed the distribution of WEEV antigen in orally‐infected Cx. p. pallens by immunohistochemistry in order to better understand the initial infection, dissemination, and transmission of WEEV in the potential vector. Orally‐infected WEEV dissemination varied within the different tissues of Cx. p. pallens, with virus antigen consistently observed in the salivary glands, foregut, midgut epithelial cells, Malpighian tubules, hindgut, and ovarian follicles of some individuals after various days of extrinsic incubation. We suggest that Cx. p. pallens, the potential vector of WEEV, has the ability to harbor the virus through the alimentary system, and the midgut epithelial cell may be the initial site of WEEV replication after ingestion of a viremic blood meal.  相似文献   

5.
Epizootic subtype IAB and IC Venezuelan equine encephalitis viruses (VEEV) readily infect the epizootic mosquito vector Aedes taeniorhynchus. The inability of enzootic subtype IE viruses to infect this mosquito species provides a model system for the identification of natural viral determinants of vector infectivity. To map mosquito infection determinants, reciprocal chimeric viruses generated from epizootic subtype IAB and enzootic IE VEEV were tested for mosquito infectivity. Chimeras containing the IAB epizootic structural gene region and, more specifically, the IAB PE2 envelope glycoprotein E2 precursor gene demonstrated an efficient infection phenotype. Introduction of the PE2 gene from an enzootic subtype ID virus into an epizootic IAB or IC genetic backbone resulted in lower infection rates than those of the epizootic parent. The finding that the E2 envelope glycoprotein, the site of epitopes that define the enzootic and epizootic subtypes, also encodes mosquito infection determinants suggests that selection for efficient infection of epizootic mosquito vectors may mediate VEE emergence.  相似文献   

6.
7.
《MABS-AUSTIN》2013,5(3):717-726
This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development.  相似文献   

8.
This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development.  相似文献   

9.
10.
Aedes aegypti (L.) mosquitoes showed a significant reduction in susceptibility to infection with Ross River virus and Murray Valley encephalitis virus when they were fed on a blood-virus mixture containing rabbit antibodies to mosquito midgut components. Presence of the antibodies did not demonstrably affect virus titres in infected mosquitoes, nor the transmission of virus from infected mosquitoes to vertebrates.  相似文献   

11.
The rapid geographic spread of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) across the United States has stimulated interest in comparative host infection studies to delineate competent avian hosts critical for viral amplification. We compared the host competence of four taxonomically related blackbird species (Icteridae) after experimental infection with WNV and with two endemic, mosquito-borne encephalitis viruses, western equine encephalomyelitis virus (family Togaviridae, genus Alphavirus, WEEV), and St. Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV). We predicted differences in disease resistance among the blackbird species based on differences in life history, because they differ in geographic range and life history traits that include mating and breeding systems. Differences were observed among the response of these hosts to all three viruses. Red-winged Blackbirds were more susceptible to SLEV than Brewer's Blackbirds, whereas Brewer's Blackbirds were more susceptible to WEEV than Red-winged Blackbirds. In response to WNV infection, cowbirds showed the lowest mean viremias, cleared their infections faster, and showed lower antibody levels than concurrently infected species. Brown-headed Cowbirds also exhibited significantly lower viremia responses after infection with SLEV and WEEV as well as coinfection with WEEV and WNV than concurrently infected icterids. We concluded that cowbirds may be more resistant to infection to both native and introduced viruses because they experience heightened exposure to a variety of pathogens of parenting birds during the course of their parasitic life style.  相似文献   

12.
We investigated the ability of western equine encephalitis virus envelope glycoproteins (WEEV GP) to pseudotype lentiviral vectors. The titers of WEEV GP-pseudotyped human immunodeficiency virus type 1 (HIV) ranged as high as 8.0 × 104 IU/ml on permissive cells. Sera from WEEV-infected mice specifically neutralized these pseudotypes; cell transduction was also sensitive to changes in pH. The host range of the pseudotyped particles in vitro was somewhat limited, which is atypical for most alphaviruses. HIV vectors pseudotyped by WEEV GP may be a useful tool for characterizing WEEV cell binding and entry and screening for small-molecule inhibitors.  相似文献   

13.
Mosquito mortality and the evolution of malaria virulence   总被引:1,自引:0,他引:1  
Abstract Several laboratory studies of malaria parasites (Plasmodium sp.) and some field observations suggest that parasite virulence, defined as the harm a parasite causes to its vertebrate host, is positively correlated with transmission. Given this advantage, what limits the continual evolution of higher parasite virulence? One possibility is that while more virulent strains are more infectious, they are also more lethal to mosquitoes. In this study, we tested whether the virulence of the rodent malaria parasite P. chabaudi in the laboratory mouse was correlated with the fitness of mosquitoes it subsequently infected. Mice were infected with one of seven genetically distinct clones of P. chabaudi that differ in virulence. Weight loss and anemia in infected mice were monitored for 16–17 days before Anopheles stephensi mosquitoes were allowed to take a blood meal from them. Infection virulence in mice was positively correlated with transmission to mosquitoes (infection rate) and weakly associated with parasite burden (number of oocysts). Mosquito survival fell with increasing oocyst burden, but there was no overall statistically significant relationship between virulence in mice and mosquito mortality. Thus, there was no evidence that more virulent strains are more lethal to mosquitoes. Both vector survival and fecundity depended on parasite clone, and contrary to expectations, mosquitoes fed on infections more virulent to mice were more fecund. The strong parasite genetic effects associated with both fecundity and survival suggests that vector fitness could be an important selective agent shaping malaria population genetics and the evolution of phenotypes such as virulence in the vector.  相似文献   

14.
The Pantanal hosts diverse wildlife species and therefore is a hotspot for arbovirus studies in South America. A serosurvey for Mayaro virus (MAYV), eastern (EEEV), western (WEEV) and Venezuelan (VEEV) equine encephalitis viruses was conducted with 237 sheep, 87 free-ranging caimans and 748 equids, including 37 collected from a ranch where a neurologic disorder outbreak had been recently reported. Sera were tested for specific viral antibodies using plaque-reduction neutralisation test. From a total of 748 equids, of which 264 were immunised with vaccine composed of EEEV and WEEV and 484 had no history of immunisation, 10 (1.3%) were seropositive for MAYV and two (0.3%) for VEEV using criteria of a ≥ 4-fold antibody titre difference. Among the 484 equids without history of immunisation, 48 (9.9%) were seropositive for EEEV and four (0.8%) for WEEV using the same criteria. Among the sheep, five were sero- positive for equine encephalitis alphaviruses, with one (0.4%) for EEEV, one (0.4%) for WEEV and three (1.3%) for VEEV. Regarding free-ranging caimans, one (1.1%) and three (3.4%), respectively, had low titres for neutralising antibodies to VEEV and undetermined alphaviruses. The neurological disorder outbreak could not be linked to the alphaviruses tested. Our findings represent strong evidence that MAYV and all equine encephalitis alphaviruses circulated in the Pantanal.  相似文献   

15.
16.
The Sindbis virus (Alphavirus; Togaviridae) strain MRE16 efficiently infects Aedes aegypti mosquitoes that ingest a blood meal containing 8 to 9 log(10) PFU of virus/ml. However, a small-plaque variant of this virus, MRE16sp, poorly infects mosquitoes after oral infection with an equivalent titer. To determine the genetic differences between MRE16 and MRE16sp viruses, we have sequenced the MRE16sp structural genes and found a 90-nucleotide deletion in the E2 glycoprotein that spans the 3' end of the coding region for the putative cell-receptor binding domain (CRBD). We examined the role of this deletion in oral infection of mosquitoes by constructing infectious clones pMRE16icDeltaE200-Y229 and pMRE16ic, representing MRE16 virus genomes with and without the deletion, respectively. A third infectious clone, pMRE16icDeltaE200-C220, was also constructed that contained a smaller deletion extending only to the 3' terminus of the CRBD coding region. Virus derived from pMRE16ic replicated with the same efficiency as parental virus in vertebrate (BHK-21) and mosquito (C6/36) cells and orally infected A. aegypti. Viruses derived from pMRE16icDeltaE200-Y229 and pMRE16icDeltaE200-C220 replicated 10- to 100-fold less efficiently in C6/36 and BHK-21 cells than did MRE16ic virus. Each deletion mutant poorly infected A. aegypti and dramatically reduced midgut infectivity and dissemination. However, all viruses generated nearly equal titers (approximately 6.0 log(10) PFU/ml) in mosquitoes 4 days after infection by intrathoracic inoculation. These results suggest that the deleted portion of the E2 CRBD represents an important determinant of MRE16 virus midgut infectivity in A. aegypti.  相似文献   

17.
18.
Six monoclonal antibodies were isolated that exhibited specificity for a furin cleavage site deletion mutant (V3526) of Venezuelan equine encephalitis virus (VEEV). These antibodies comprise a single competition group and bound the E3 glycoprotein of VEEV subtype I viruses but failed to bind the E3 glycoprotein of other alphaviruses. These antibodies neutralized V3526 virus infectivity but did not neutralize the parental strain of Trinidad donkey (TrD) VEEV. However, the E3-specific antibodies did inhibit the production of virus from VEEV TrD-infected cells. In addition, passive immunization of mice demonstrated that antibody to the E3 glycoprotein provided protection against lethal VEEV TrD challenge. This is the first recognition of a protective epitope in the E3 glycoprotein. Furthermore, these results indicate that E3 plays a critical role late in the morphogenesis of progeny virus after E3 appears on the surfaces of infected cells.  相似文献   

19.
Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS) to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD) strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections.  相似文献   

20.
Western equine encephalitis virus (WEEV; Togaviridae, Alphavirus) is an enveloped RNA virus that is typically transmitted to vertebrate hosts by infected mosquitoes. WEEV is an important cause of viral encephalitis in humans and horses in the Americas, and infection results in a range of disease, from mild flu-like illnesses to encephalitis, coma, and death. In addition to spreading via mosquito vectors, human WEEV infections can potentially occur directly via aerosol transmission. Due to its aerosol infectivity and virulence, WEEV is thus classified as a biological safety level 3 (BSL-3) agent. Because of its highly infectious nature and containment requirements, it has not been possible to investigate WEEV''s structure or assembly mechanism using standard structural biology techniques. Thus, to image WEEV and other BSL-3 agents, we have constructed a first-of-its-kind BSL-3 cryoelectron microscopy (cryoEM) containment facility. cryoEM images of WEEV were used to determine the first three-dimensional structure of this important human pathogen. The overall organization of WEEV is similar to those of other alphaviruses, consistent with the high sequence similarity among alphavirus structural proteins. Surprisingly, the nucleocapsid of WEEV, a New World virus, is more similar to the Old World alphavirus Sindbis virus than to other New World alphaviruses.The alphaviruses comprise a genus of single-stranded, plus-sense, enveloped RNA viruses that, together with rubella virus, comprise the family Togaviridae. The current classification of the genus Alphavirus includes 29 different species, with multiple subtypes and/or varieties represented within some species (30). These species can be grouped into 8 different complexes based on antigenic and/or genetic similarities (20). Most viruses from the New World are found in the Eastern, Venezuelan, and Western equine encephalitis (EEE, VEE, and WEE, respectively) complexes and cause encephalitis in humans and a variety of domesticated animals. Old World alphaviruses, on the other hand, typically cause only an arthralgia and rash syndrome that is rarely life threatening (5, 24). Among the New World alphaviruses, EEE, VEE, and WEE viruses (EEEV, VEEV, and WEEV, respectively) are potential biological weapons as well as naturally emerging pathogens and are therefore included on the category B Priority Pathogens list of the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (http://www.niaid.nih.gov/topics/biodefenserelated/biodefense/research/pages/cata.aspx).Alphaviruses replicate in the cytoplasm of infected cells after entry via receptor-mediated endocytosis (8). Following internalization, fusion of the viral envelope with the endocytic membrane is mediated by a low-pH-induced conformational change that exposes a fusion peptide found in the E1 envelope glycoprotein. The nucleocapsid then disassembles upon interactions with ribosomes, and an open reading frame (ORF) found in the 5′ two-thirds of the genome is translated. The resultant polyprotein is cleaved into 4 nonstructural proteins (nsP1 to -4) that mediate viral RNA replication, RNA capping, and polyprotein processing (Fig. (Fig.1).1). The structural proteins, including the two envelope glycoproteins E2 and E1 as well as the capsid protein, are encoded in a second ORF that is translated from a subgenomic message often referred to as 26S RNA. Following auto-cleavage of the capsid protein in the cytoplasm, the remaining polyprotein is inserted into the endoplasmic reticulum, where it is cleaved by host cell proteases and then processed through the secretory pathway, where the glycosylation of E2 and E1 occurs. Virion maturation occurs after E2/E1 heterodimers are inserted into the plasma membrane and 240 copies of the capsid protein interact with one copy of the genomic RNA to form nucleocapsids. These nucleocapsids then interact with a cytoplasmic domain of the E2 protein to initiate budding. The mature virion thus includes 240 copies of the capsid protein and 240 E2/E1 heterodimers arranged as trimeric spikes on the surface of the virus (8).Open in a separate windowFIG. 1.Diagram of the alphavirus genome, showing the 5′ cap, 5′ untranslated region, nonstructural polyprotein open reading frame, and major functions of the individual proteins, subgenomic promoter, structural polyprotein open reading frame, 3′ untranslated region, and poly(A) tail.The structures of several different alphaviruses, including Sindbis virus (SINV) (13), Ross River virus (RRV) (3, 35), Semliki Forest virus (SFV), (11), and VEEV (16), have been solved to subnanometer resolution using cryoelectron microscopy (cryoEM), and the X-ray crystallographic structure of the E1 protein from Semliki Forest virus has been determined to atomic resolution (9). The alphaviruses are ca. 700 Å in diameter, with 80 trimeric spikes on their surfaces. By fitting the E1 crystal structure into cryoEM reconstruction maps of whole viruses, the orientations of both envelope proteins within the spikes have been estimated (36). The E1 and E2 proteins are similar in shape, and the E2 proteins extend to the tips of the spikes, where most glycosylation and antibody-binding sites have been mapped (13). The underlying T=4 icosahedral capsid is constructed from regularly ordered capsomers arranged as hexons and pentons. These pentons and hexons consist of capsid protein monomers that apparently represent only the C-terminal half of the protein. Crystal structures of alphavirus capsid proteins also indicate that only the C terminus, including the protease domain, is ordered (25). cryoEM reconstructions of VEEV nucleocapsids isolated from virions have a less ordered structure, with density redistributed from the 3-fold to the 5-fold axis, suggesting that the envelope and/or the envelope glycoproteins constrain and stabilize the nucleocapsid in a compressed structure (15). Additionally, the VEEV nucleocapsids within viruses differ from those of Old World alphaviruses, with a counterclockwise rotation of the pentameric and hexameric capsomers in VEEV (16). Similar differences were observed in the capsid of Aura virus (AURAV), another New World alphavirus (34).In addition to being an important human and equine pathogen, WEEV is one of three alphaviruses that descended from a recombinant ancestor (6, 31). This ancestor derived its nonstructural and capsid protein genes from an ancestral EEEV strain, whereas its envelope glycoprotein genes were provided from an ancestral SINV. The recombination event was apparently followed by compensatory mutations in the cytoplasmic domain of the E2 protein that restored efficient interactions with the EEEV-like capsid protein (6). If this interpretation of the WEEV ancestral recombination event is correct, its nucleocapsids, constructed from capsid proteins derived from the New World EEEV ancestor, would be expected be more similar to those of the New World VEEV than to those of the Old World SINV, RRV, and SFV. To test this hypothesis and to investigate other structural features of interest related to its recombinant history and pathogenicity, we determined the structure of WEEV to a 13-Å resolution using cryoEM image reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号