首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and “nutritional immunology” has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional “immune system” that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to pathogen pressure in the context of nutritional environment.  相似文献   

7.
8.
An appreciable fraction of the Drosophila melanogaster genome is dedicated to male fertility. One approach to characterizing this subset of the genome is through the study of male-sterile mutations. We studied the relation between vital and male-fertility genes in three large autosomal regions that were saturated for lethal and male-sterile mutations. The majority of male-sterile mutations affect genes that are exclusively expressed in males. These genes are required only for male fertility, and several mutant alleles of each such gene were encountered. A few male-sterile mutations were alleles of vital genes that are expressed in both males and females. About one-fifth of the genes in Drosophila melanogaster show male-specific expression in adults. Although some earlier studies found a paucity of genes on the X chromosome showing male-biased expression, we did not find any significant differences between the X chromosome and the autosomes either in the relative frequencies of mutations to male sterility or in the frequencies of genes with male-specific expression in adults. Our results suggest that as much as 25% of the Drosophila genome may be dedicated to male fertility.  相似文献   

9.
GSH concentration is considerably lower in the nucleus than in the cytoplasm; however, it is significantly elevated during active cell proliferation. The main purpose of this study was to understand the mechanism underlying these variations in nuclear/cytoplasmic distribution of GSH. The rate-limiting step in the de novo GSH biosynthesis pathway is catalyzed by glutamate cysteine ligase (GCL), a heterodimer, composed of a catalytic subunit (GCLc) and a modulatory subunit (GCLm). In Drosophila, GCLc, but not GCLm, contains a nuclear localization signal (NLS). Drosophila S2 cells, constitutively expressing regular GCLc protein or expressing GCLc protein with a mutated NLS motif, were generated by transfection. In quiescent S2 cells, GCLc is aggregated in the perinuclear cytosol and the nucleus, whereas GLCm resides solely in the cytosol. In actively proliferating S2 cells, expressing the normal NLS motif, GCLc migrates from the perinuclear cytoplasm into the nucleus, and the nuclear GSH level becomes elevated; in contrast, in proliferating cells, expressing the mutated NLS motif, neither does the GCLc migrate into the nucleus nor does the nuclear GSH amount rise. In S2 cells expressing wild type GCLc, perturbation of cellular redox state by exposure to cadmium resulted in the migration of GCLc into the nucleus but not in cells expressing GCLc with the mutated NLS motif. Overall, results indicated that GSH biosynthesis in the nucleus is associated with migration of only the GCLc subunit from the cytoplasm into the nucleus, and this migration requires the presence of an intact NLS.The tripeptide, γ-glutamylcysteinylglycine or GSH, is the most abundant intracellular nonprotein thiol. It serves multiple physiological functions, including maintenance of redox homeostasis, providing reducing equivalents for the elimination of reactive oxygen species, protection against electrophilic xenobiotics, maintenance of protein structure, and storage/transport of l-cysteine. GSH is synthesized de novo by two ATP-dependent consecutive reactions: ligation of l-glutamate to l-cysteine by the activity of glutamate-cysteine ligase (GCL2; EC 6.3.2.2), a rate-limiting step in the pathway, followed by the coupling of glycine to γ-glutamylcysteine by glutathione synthase (EC 6.3.2.3). The GCL holoenzyme is heterodimeric, consisting of a catalytic (GCLc) and a modifier (GCLm) subunit, each encoded by a unique gene. The intracellular ratios of GLCc and GCLm are, however, not necessarily equimolar and may be altered under conditions of oxidative stress. Although GCLc by itself is fully competent to catalyze the biosynthesis of GSH (1), dimerization with GCLm lowers the Km for glutamate and also decreases sensitivity to feedback inhibition by GSH (2).Overexpression of GCL subunits in cultured cells has been reported to increase GSH production and confer enhanced protection against oxidative stress (3), apoptosis (4), and oxidant-induced DNA lesions (5). We have shown that overexpressions of GCLc or GCLm boost GSH biosynthesis and extend life span in Drosophila melanogaster (6). In contrast, inhibition of GCL activity results in decreased GSH levels, enhanced susceptibility to oxidative or nitrosative stress, increased DNA damage, and cell cycle arrest (7, 8). The homozygous knock-out for the catalytic GCLc subunit is embryonic lethal (9).GSH is predominantly synthesized in the cytoplasm, but its levels greatly vary among the different intracellular compartments, such as the nucleus, mitochondria, endoplasmic reticulum, and cytosol (1012). Currently available evidence suggests the existence of two alternate mechanisms for the differential distribution of GSH in subcellular compartments: (i) GSH may first be synthesized in the cytoplasm and then transported into the organelles either actively or via passive diffusion; (ii) GSH may be synthesized in those organelles that display activities of GCL and glutathione synthase (13, 14).It has been demonstrated that GSH levels in the nucleus of proliferating cells are much higher than those in the confluent cells (15); however, the mechanism underlying this variation is presently unclear. In the present study, we provide evidence that GSH is synthesized in the nucleus and that this synthesis is dependent upon the shuttling of the GCLc, but not the GCLm, subunit from the cytoplasm to the nucleus. The ability of GCLc to migrate into the nucleus is due to the presence of a nuclear localization signal (NLS).  相似文献   

10.
11.
12.
Natural populations of the fruit fly, Drosophila melanogaster, segregate genetic variation that leads to cardiac disease phenotypes. One nearly isogenic line from a North Carolina peach orchard, WE70, is shown to harbor two genetically distinct heart phenotypes: elevated incidence of arrhythmias, and a dramatically constricted heart diameter in both diastole and systole, with resemblance to restrictive cardiomyopathy in humans. Assuming the source to be rare variants of large effect, we performed Bulked Segregant Analysis using genomic DNA hybridization to Affymetrix chips to detect single feature polymorphisms, but found that the mutant phenotypes are more likely to have a polygenic basis. Further mapping efforts revealed a complex architecture wherein the constricted cardiomyopathy phenotype was observed in individual whole chromosome substitution lines, implying that variants on both major autosomes are sufficient to produce the phenotype. A panel of 170 Recombinant Inbred Lines (RIL) was generated, and a small subset of mutant lines selected, but these each complemented both whole chromosome substitutions, implying a non-additive (epistatic) contribution to the “disease” phenotype. Low coverage whole genome sequencing was also used to attempt to map chromosomal regions contributing to both the cardiomyopathy and arrhythmia, but a polygenic architecture had to be again inferred to be most likely. These results show that an apparently simple rare phenotype can have a complex genetic basis that would be refractory to mapping by deep sequencing in pedigrees. We present this as a cautionary tale regarding assumptions related to attempts to map new disease mutations on the assumption that probands carry a single causal mutation.  相似文献   

13.
Chromosomal inversions have been an enduring interest of population geneticists since their discovery in Drosophila melanogaster. Numerous lines of evidence suggest powerful selective pressures govern the distributions of polymorphic inversions, and these observations have spurred the development of many explanatory models. However, due to a paucity of nucleotide data, little progress has been made towards investigating selective hypotheses or towards inferring the genealogical histories of inversions, which can inform models of inversion evolution and suggest selective mechanisms. Here, we utilize population genomic data to address persisting gaps in our knowledge of D. melanogaster''s inversions. We develop a method, termed Reference-Assisted Reassembly, to assemble unbiased, highly accurate sequences near inversion breakpoints, which we use to estimate the age and the geographic origins of polymorphic inversions. We find that inversions are young, and most are African in origin, which is consistent with the demography of the species. The data suggest that inversions interact with polymorphism not only in breakpoint regions but also chromosome-wide. Inversions remain differentiated at low levels from standard haplotypes even in regions that are distant from breakpoints. Although genetic exchange appears fairly extensive, we identify numerous regions that are qualitatively consistent with selective hypotheses. Finally, we show that In(1)Be, which we estimate to be ∼60 years old (95% CI 5.9 to 372.8 years), has likely achieved high frequency via sex-ratio segregation distortion in males. With deeper sampling, it will be possible to build on our inferences of inversion histories to rigorously test selective models—particularly those that postulate that inversions achieve a selective advantage through the maintenance of co-adapted allele complexes.  相似文献   

14.
Many biomarkers have been shown to be associated not only with chronological age but also with functional measures of biological age. In human populations, it is difficult to show whether variation in biological age is truly predictive of life expectancy, as such research would require longitudinal studies over many years, or even decades. We followed adult cohorts of 20 Drosophila Genetic Reference Panel (DGRP) strains chosen to represent the breadth of lifespan variation, obtain estimates of lifespan, baseline mortality, and rate of aging, and associate these parameters with age‐specific functional traits including fecundity and climbing activity and with age‐specific targeted metabolomic profiles. We show that activity levels and metabolome‐wide profiles are strongly associated with age, that numerous individual metabolites show a strong association with lifespan, and that the metabolome provides a biological clock that predicts not only sample age but also future mortality rates and lifespan. This study with 20 genotypes and 87 metabolites, while relatively small in scope, establishes strong proof of principle for the fly as a powerful experimental model to test hypotheses about biomarkers and aging and provides further evidence for the potential value of metabolomic profiles as biomarkers of aging.  相似文献   

15.
Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont—which is known to be protective against virus infections in Drosophila—we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host–virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.  相似文献   

16.
17.
Cytoplasmic Polyadenylation Element Binding (CPEB) proteins are translational regulators that can either activate or repress translation depending on the target mRNA and the specific biological context. There are two CPEB subfamilies and most animals have one or more genes from each. Drosophila has a single CPEB gene, orb and orb2, from each subfamily. orb expression is only detected at high levels in the germline and has critical functions in oogenesis but not spermatogenesis. By contrast, orb2 is broadly expressed in the soma; and previous studies have revealed important functions in asymmetric cell division, viability, motor function, learning, and memory. Here we show that orb2 is also expressed in the adult male germline and that it has essential functions in programming the progression of spermatogenesis from meiosis through differentiation. Like the translational regulators boule (bol) and off-schedule (ofs), orb2 is required for meiosis and orb2 mutant spermatocytes undergo a prolonged arrest during the meiotic G2-M transition. However, orb2 differs from boule and off-schedule in that this arrest occurs at a later step in meiotic progression after the synthesis of the meiotic regulator twine. orb2 is also required for the orderly differentiation of the spermatids after meiosis is complete. The differentiation defects in orb2 mutants include abnormal elongation of the spermatid flagellar axonemes, a failure in individualization and improper post-meiotic gene expression. Amongst the orb2 differentiation targets are orb and two other mRNAs, which are transcribed post-meiotically and localized to the tip of the flagellar axonemes. Additionally, analysis of a partial loss of function orb2 mutant suggests that the orb2 differentiation phenotypes are independent of the earlier arrest in meiosis.  相似文献   

18.
DTNBP1 has been recognized as a schizophrenia susceptible gene, and its protein product, dysbindin-1, is down-regulated in the brains of schizophrenic patients. However, little is known about the physiological role of dysbindin-1 in the central nervous system. We hypothesized that disruption of dysbindin-1 with unidentified proteins could contribute to pathogenesis and the symptoms of schizophrenia. GST pull-down from human neuroblastoma lysates showed an association of dysbindin-1 with the DNA-dependent protein kinase (DNA-PK) complex. The DNA-PK complex interacts only with splice isoforms A and B, but not with C. We found that isoforms A and B localized in nucleus, where the kinase complex exist, whereas the isoform C was found exclusively in cytosol. Furthermore, results of phosphorylation assay suggest that the DNA-PK complex phosphorylated dysbindin-1 isoforms A and B in cells. These observations suggest that DNA-PK regulates the dysbindin-1 isoforms A and B by phosphorylation in nucleus. Isoform C does not contain exons from 1 to 6. Since schizophrenia-related single nucleotide polymorphisms (SNPs) occur in these introns between exon 1 and exon 6, we suggest that these SNPs might affect splicing of DTNBP1, which leads to impairment of the functional interaction between dysbindin-1 and DNA-PK in schizophrenic patients.  相似文献   

19.
Chronic hypoxia (CH) occurs under certain physiological or pathological conditions, including in people who reside at high altitude or suffer chronic cardiovascular or pulmonary diseases. As mitochondria are the predominant oxygen-consuming organelles to generate ATP through oxidative phosphorylation in cells, their responses, through structural or molecular modifications, to limited oxygen supply play an important role in the overall functional adaptation to hypoxia. Here, we report the adaptive mitochondrial ultrastructural modifications and the functional impacts in a recently generated hypoxia-adapted Drosophila melanogaster strain that survives severe, otherwise lethal, hypoxic conditions. Using electron tomography, we discovered increased mitochondrial volume density and cristae abundance, yet also cristae fragmentation and a unique honeycomb-like structure in the mitochondria of hypoxia-adapted flies. The homeostatic levels of adenylate and energy charge were similar between hypoxia-adapted and naïve control flies and the hypoxia-adapted flies remained active under severe hypoxia as quantified by negative geotaxis behavior. The equilibrium ATP level was lower in hypoxia-adapted flies than those of the naïve controls tested under severe hypoxia that inhibited the motion of control flies. Our results suggest that the structural rearrangement in the mitochondria of hypoxia-adapted flies may be an important adaptive mechanism that plays a critical role in preserving adenylate homeostasis and metabolism as well as muscle function under chronic hypoxic conditions.  相似文献   

20.
Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence variation in Wolbachia and host mitochondrial genomes. Here we use whole-genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe, and Africa to predict Wolbachia infection status, estimate relative cytoplasmic genome copy number, and reconstruct Wolbachia and mitochondrial genome sequences. Overall, 63% of Drosophila strains were predicted to be infected with Wolbachia by our in silico analysis pipeline, which shows 99% concordance with infection status determined by diagnostic PCR. Complete Wolbachia and mitochondrial genomes show congruent phylogenies, consistent with strict vertical transmission through the maternal cytoplasm and imperfect transmission of Wolbachia. Bayesian phylogenetic analysis reveals that the most recent common ancestor of all Wolbachia and mitochondrial genomes in D. melanogaster dates to around 8,000 years ago. We find evidence for a recent global replacement of ancestral Wolbachia and mtDNA lineages, but our data suggest that the derived wMel lineage arose several thousand years ago, not in the 20th century as previously proposed. Our data also provide evidence that this global replacement event is incomplete and is likely to be one of several similar incomplete replacement events that have occurred since the out-of-Africa migration that allowed D. melanogaster to colonize worldwide habitats. This study provides a complete genomic analysis of the evolutionary mode and temporal dynamics of the D. melanogasterWolbachia symbiosis, as well as important resources for further analyses of the impact of Wolbachia on host biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号