首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
2.
Wu JF  Wang Y  Wu SH 《Plant physiology》2008,148(2):948-959
The “light” signal from the environment sets the circadian clock to regulate multiple physiological processes for optimal rhythmic growth and development. One such process is the control of flowering time by photoperiod perception in plants. In Arabidopsis (Arabidopsis thaliana), the flowering time is determined by the correct interconnection of light input and signal output by the circadian clock. The identification of additional clock proteins will help to better dissect the complex nature of the circadian clock in Arabidopsis. Here, we show LIGHT-REGULATED WD1 (LWD1)/LWD2 as new clock proteins involved in photoperiod control. The lwd1lwd2 double mutant has an early-flowering phenotype, contributed by the significant phase shift of CONSTANS (CO), and, therefore, an increased expression of FLOWERING LOCUS T (FT) before dusk. Under entrainment conditions, the expression phase of oscillator (CIRCADIAN CLOCK ASSOCIATED1 [CCA1], LATE ELONGATED HYPOCOTYL [LHY], TIMING OF CAB EXPRESSION1 [TOC1], and EARLY FLOWERING4 [ELF4]) and output (GIGANTEA, FLAVIN-BINDING, KELCH REPEAT, F-BOX1, CYCLING DOF FACTOR1, CO, and FT) genes in the photoperiod pathway shifts approximately 3 h forward in the lwd1lwd2 double mutant. Both the oscillator (CCA1, LHY, TOC1, and ELF4) and output (COLD, CIRCADIAN RHYTHM, AND RNA BINDING2 and CHLOROPHYLL A/B-BINDING PROTEIN2) genes have a short period length in the lwd1lwd2 double mutant. Our data imply that LWD1/LWD2 proteins function in close proximity to or within the circadian clock for photoperiodic flowering control.  相似文献   

3.
Serikawa M  Miwa K  Kondo T  Oyama T 《Plant physiology》2008,146(4):1952-1963
Circadian rhythms are found in organisms from cyanobacteria to plants and animals. In flowering plants, the circadian clock is involved in the regulation of various physiological phenomena, including growth, leaf movement, stomata opening, and floral transitions. Molecular mechanisms underlying the circadian clock have been identified using Arabidopsis (Arabidopsis thaliana); the functions and genetic networks of a number of clock-related genes, including CIRCADIAN CLOCK ASSOCIATED1, LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1, GIGANTEA (GI), and EARLY FLOWERING3 (ELF3), have been analyzed. The degree to which clock systems are conserved among flowering plants, however, is still unclear. We previously isolated homologs for Arabidopsis clock-related genes from monocotyledon Lemna plants. Here, we report the physiological roles of these Lemna gibba genes (LgLHYH1, LgLHYH2, LgGIH1, and LgELF3H1) in the circadian system. We studied the effects of overexpression and RNA interference (RNAi) of these genes on the rhythmic expression of morning- and evening-specific reporters. Overexpression of each gene disrupted the rhythmicity of either or both reporters, suggesting that these four homologs can be involved in the circadian system. RNAi of each of the genes except LgLHYH2 affected the bioluminescence rhythms of both reporters. These results indicated that these homologs are involved in the circadian system of Lemna plants and that the structure of the circadian clock is likely to be conserved between monocotyledons and dicotyledons. Interestingly, RNAi of LgGIH1 almost completely abolished the circadian rhythm; because this effect appeared to be much stronger than the phenotype observed in an Arabidopsis gi loss-of-function mutant, the precise role of each clock gene may have diverged in the clock systems of Lemna and Arabidopsis.  相似文献   

4.
The Lemna genus is a group of monocotyledonous plants with tiny, floating bodies. Lemna gibba G3 and L. paucicostata 6746 were once intensively analyzed for physiological timing systems of photoperiodic flowering and circadian rhythms since they showed obligatory and sensitive photoperiodic responses of a long-day and a short-day plant, respectively. We attempted to approach the divergence of biological timing systems at the molecular level using these plants. We first employed molecular techniques to study their circadian clock systems. We developed a convenient bioluminescent reporter system to monitor the circadian rhythms of Lemna plants. As in Arabidopsis, the Arabidopsis CCA1 promoter produced circadian expression in Lemna plants, though the phases and the sustainability of bioluminescence rhythms were somewhat diverged between them. Lemna homologs of the Arabidopsis clock-related genes LHY/CCA1, GI, ELF3 and PRRs were then isolated as candidates for clock-related genes in these plants. These genes showed rhythmic expression profiles that were basically similar to those of Arabidopsis under light-dark conditions. Results from co-transfection assays using the bioluminescence reporter and overexpression effectors suggested that the LHY and GI homologs of Lemna can function in the circadian clock system like the counterparts of Arabidopsis. All these results suggested that the frame of the circadian clock appeared to be conserved not only between the two Lemna plants but also between monocotyledons and dicotyledons. However, divergence of gene numbers and expression profiles for LHY/CCA1 homologs were found between Lemna, rice and Arabidopsis, suggesting that some modification of clock-related components occurred through their evolution.  相似文献   

5.
6.
The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima''s D and Fay and Wu''s H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima''s D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce.  相似文献   

7.
The ABC model of floral organ identity is based on studies of Arabidopsis and Antirrhinum, both of which are highly derived eudicots. Most of the genes required for the ABC functions in Arabidopsis and Antirrhinum are members of the MADS-box gene family, and their orthologs are present in all major angiosperm lineages. Although the eudicots comprise 75% of all angiosperms, most of the diversity in arrangement and number of floral parts is actually found among basal angiosperm lineages, for which little is known about the genes that control floral development. To investigate the conservation and divergence of expression patterns of floral MADS-box genes in basal angiosperms relative to eudicot model systems, we isolated several floral MADS-box genes and examined their expression patterns in representative species, including Amborella (Amborellaceae), Nuphar (Nymphaeaceae) and Illicium (Austrobaileyales), the successive sister groups to all other extant angiosperms, plus Magnolia and Asimina, members of the large magnoliid clade. Our results from multiple methods (relative-quantitative RT-PCR, real-time PCR and RNA in situ hybridization) revealed that expression patterns of floral MADS-box genes in basal angiosperms are broader than those of their counterparts in eudicots and monocots. In particular, (i) AP1 homologs are generally expressed in all floral organs and leaves, (ii) AP3/PI homologs are generally expressed in all floral organs and (iii) AG homologs are expressed in stamens and carpels of most basal angiosperms, in agreement with the expectations of the ABC model; however, an AG homolog is also expressed in the tepals of Illicium. The broader range of strong expression of AP3/PI homologs is inferred to be the ancestral pattern for all angiosperms and is also consistent with the gradual morphological intergradations often observed between adjacent floral organs in basal angiosperms.  相似文献   

8.
9.
Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.  相似文献   

10.
Circadian clock genes are critical regulators of energy homeostasis and metabolism. However, whether variation in the circadian genes is associated with metabolic phenotypes in humans remains to be explored. In this study, we systemically genotyped 20 tag single nucleotide polymorphisms (SNPs) in 8 candidate genes involved in circadian clock, including CLOCK, BMAL1(ARNTL), PER1, PER2, CRY1, CRY2, CSNK1E,, and NOC(CCRN4L) in 1,510 non-diabetic Chinese subjects in Taipei and Yunlin populations in Taiwan. Their associations with metabolic phenotypes were analyzed. We found that genetic variation in the NOC gene, rs9684900 was associated with body mass index (BMI) (P = 0.0016, Bonferroni corrected P = 0.032). Another variant, rs135764 in the CSNK1E gene was associated with fasting glucose (P = 0.0023, Bonferroni corrected P = 0.046). These associations were consistent in both Taipei and Yunlin populations. Significant epistatic and joint effects between SNPs on BMI and related phenotypes were observed. Furthermore, NOC mRNA levels in human abdominal adipose tissue were significantly increased in obese subjects compared to non-obese controls.

Conclusion

Genetic variation in the NOC gene is associated with BMI in Chinese subjects.  相似文献   

11.
12.
13.
Corals exhibit circadian behaviors, but little is known about the molecular mechanisms underlying the regulation of these behaviors. We surveyed the recently decoded genome of the coral, Acropora digitifera, for photoreceptor and circadian genes, using molecular phylogenetic analyses. Our search for photoreceptor genes yielded seven opsin and three cryptochrome genes. Two genes from each family likely underwent tandem duplication in the coral lineage. We also found the following A. digitifera orthologs to Drosophila and mammalian circadian clock genes: four clock, one bmal/cycle, three pdp1-like, one creb/atf, one sgg/zw3, two ck2alpha, one dco (csnk1d/cnsk1e), one slim/BTRC, and one grinl. No vrille, rev-ervα/nr1d1, bhlh2, vpac2, adcyap1, or adcyaplr1 orthologs were found. Intriguingly, in spite of an extensive survey, we also failed to find homologs of period and timeless, although we did find one timeout gene. In addition, the coral genes were compared to orthologous genes in the sea anemone, Nematostella vectensis. Thus, the coral and sea anemone genomes share a similar repertoire of circadian clock genes, although A. digitifera contains more clock genes and fewer photoreceptor genes than N. vectensis. This suggests that the circadian clock system was established in a common ancestor of corals and sea anemones, and was diversified by tandem gene duplications and the loss of paralogous genes in each lineage. It will be interesting to determine how the coral circadian clock functions without period.  相似文献   

14.
15.
16.
17.

Key message

We isolated differentially expressed and dark-responsive genes during flower development and opening in petals of morning glory.

Abstract

Flower opening usually depends on petal expansion and is regulated by both genetic and environmental factors. Flower opening in morning glory (Ipomoea nil) is controlled by the dark/light regime just prior to opening. Opening was normal after 8- or 12-h dark periods but progressed very slowly after a 4-h dark period or in continuous light. Four genes (InXTH1InXTH4) encoding xyloglucan endotransglucosylase/hydrolases (XTHs) and three genes (InEXPA1InEXPA3) encoding alpha-expansins (EXPAs) were isolated. The expression patterns of InXTH2, InXTH3, and InXTH4 in petals were closely correlated with the rate of flower opening controlled by the length of the dark period prior to opening, but those of the EXPA genes were not. The expression pattern of InXTH1 gene was closely correlated with petal elongation. Suppression subtractive hybridization was used to isolate dark-responsive genes accompanying flower opening. The expressions of ten isolated genes were associated with the length of the dark period prior to flower opening. One gene was highly homologous to Arabidopsis PSEUDO-RESPONSE REGULATOR7, which is associated with the circadian clock and phytochrome signaling; another to Arabidopsis REVEILLE1, which affects the output of the circadian clock. Other genes were related to light responses, plant hormone effects and signal transduction. The possible roles of these genes in regulation of flower opening are discussed.  相似文献   

18.
19.
The angiosperm circadian clock has been well established from molecular-genetic studies in a temperate plant model. Conservation of clock function is less explored in plants from the tropics. Cassava (Manihot esculenta) is a staple crop grown in the tropics that has been of limited research interest, and more generally, research on photoperiod and clock genes has been sparse. EARLY FLOWERING 4 (AtELF4) of the temperate plant Arabidopsis thaliana (Arabidopsis) has been reported to be required for photoperiod perception and circadian function. Here, we describe our start to identify circadian and photoperiod genes in cassava with an account on the characterization of its ELF4 gene (MeELF4). After isolating MeELF4, a phylogenetic study was conducted and it was found to cluster within the ELF4 subclade of the ELF4/EFL super-family. Similar to studies in temperate plants, MeELF4 was shown to be an evening-expressed gene in cassava. This collectively suggested to us that MeELF4 could be a functional ortholog of AtELF4. To test this, complementation studies of MeELF4 were performed in the Arabidopsis elf4 mutant. Hypocotyl-length measurements and flowering-time analysis were performed. MeELF4-complementation transgenics in the elf4 background were restored to the wild-type growth habit, suggesting a total rescue of photoperiodic perception. To expand on the molecular role of MeELF4 in the resulting transgenic-complementation lines, the CCA1 and CCR2 promoter-luciferase markers where respectively introduced and bioluminescence-imaging experiments revealed a restoration of circadian-regulated gene expression. The collective results showed that the cassava gene MeELF4 is a functional clock ortholog of AtELF4.  相似文献   

20.
Qian H  Hu B  Yu S  Pan X  Wu T  Fu Z 《PloS one》2012,7(3):e33347
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号