首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement.

Methods

The chromosomal localization of (ACG)n and (GAA)n microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH.

Key Results

Single pericentromeric (ACG)n signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)n sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7Ub–7Mb reciprocal translocations and one had a 7Ub–1Mb rearrangement, while two Ae. geniculata accessions carried 7Ug–1Mg or 5Ug–5Mg translocations. Conspicuous (ACG)n and/or (GAA)n clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them.

Conclusions

Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)n and (GAA)n SSR motifs serve as additional chromosome markers for the karyotypic analysis of UM genome Aegilops species.  相似文献   

2.

Background and Aims

The sedge genus Carex, the most diversified angiosperm genus of the northern temperate zone, is renowned for its holocentric chromosomes and karyotype variability. The genus exhibits high variation in chromosome numbers both among and within species. Despite the possibility that this chromosome evolution may play a role in the high species diversity of Carex, population-level patterns of molecular and cytogenetic differentiation in the genus have not been extensively studied.

Methods

Microsatellite variation (11 loci, 461 individuals) and chromosomal diversity (82 individuals) were investigated in 22 Midwestern populations of the North American sedge Carex scoparia and two Northeastern populations.

Key Results

Among Midwestern populations, geographic distance is the most important predictor of genetic differentiation. Within populations, inbreeding is high and chromosome variation explains a significant component of genetic differentiation. Infrequent dispersal among populations separated by >100 km explains an important component of molecular genetic and cytogenetic diversity within populations. However, karyotype variation and correlation between genetic and chromosomal variation persist within populations even when putative migrants based on genetic data are excluded.

Conclusions

These findings demonstrate dispersal and genetic connectivity among widespread populations that differ in chromosome numbers, explaining the phenomenon of genetic coherence in this karyotypically diverse sedge species. More generally, the study suggests that traditional sedge taxonomic boundaries demarcate good species even when those species encompass a high range of chromosomal diversity. This finding is important evidence as we work to document the limits and drivers of biodiversity in one of the world''s largest angiosperm genera.  相似文献   

3.

Background and Aims

Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal.

Methods

Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos.

Key Results

A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species.

Conclusions

The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades.  相似文献   

4.

Background and Aims Hordeum marinum

is a species complex that includes the diploid subspecies marinum and both diploid and tetraploid forms of gussoneanum. Their relationships, the rank of the taxa and the origin of the polyploid forms remain points of debate. The present work reports a comparative karyotype analysis of six H. marinum accessions representing all taxa and cytotypes.

Methods

Karyotypes were determined by analysing the chromosomal distribution of several tandemly repeated sequences, including the Triticeae cloned probes pTa71, pTa794, pAs1 and pSc119·2 and the simple sequence repeats (SSRs) (AG)10, (AAC)5, (AAG)5, (ACT)5 and (ATC)5.

Key Results

The identification of each chromosome pair in all subspecies and cytotypes is reported for the first time. Homologous relationships are also established. Wide karyotypic differences were detected within marinum accessions. Specific chromosomal markers characterized and differentiated the genomes of marinum and diploid gussoneanum. Two subgenomes were detected in the tetraploids. One of these had the same chromosome complement as diploid gussoneanum; the second subgenome, although similar to the chromosome complement of diploid H. marinum sensu lato, appeared to have no counterpart in the marinum accessions analysed here.

Conclusions

The tetraploid forms of gussoneanum appear to have come about through a cross between a diploid gussoneanum progenitor and a second, related—but unidentified—diploid ancestor. The results reveal the genome structure of the different H. marinum taxa and demonstrate the allopolyploid origin of the tetraploid forms of gussoneanum.  相似文献   

5.

Background and Aims

The potential for gene exchange between species with different ploidy levels has long been recognized, but only a few studies have tested this hypothesis in situ and most of them focused on not more than two co-occurring species. In this study, we examined hybridization patterns in two sites containing three species of the genus Dactylorhiza (diploid D. incarnata and D. fuchsii and their allotetraploid derivative D. praetermissa).

Methods

To compare the strength of reproductive barriers between diploid species, and between diploid and tetraploid species, crossing experiments were combined with morphometric and molecular analyses using amplified fragment length polymorphism markers, whereas flow cytometric analyses were used to verify the hybrid origin of putative hybrids.

Key Results

In both sites, extensive hybridization was observed, indicating that gene flow between species is possible within the investigated populations. Bayesian assignment analyses indicated that the majority of hybrids were F1 hybrids, but in some cases triple hybrids (hybrids with three species as parents) were observed, suggesting secondary gene flow. Crossing experiments showed that only crosses between pure species yielded a high percentage of viable seeds. When hybrids were involved as either pollen-receptor or pollen-donor, almost no viable seeds were formed, indicating strong post-zygotic reproductive isolation and high sterility.

Conclusions

Strong post-mating reproductive barriers prevent local breakdown of species boundaries in Dactylorhiza despite frequent hybridization between parental species. However, the presence of triple hybrids indicates that in some cases hybridization may extend the F1 generation.  相似文献   

6.

Background and Aims

Evolutionary transitions between separate and combined sexes have frequently occurred across various plant lineages. In mosses, which are haploid-dominant, evolutionary transitions from separate to combined sexes are often associated with genome doubling. Polyploidy and hermaphroditism have strong effects on the inbreeding depression of a population, and are subsequently predicted to affect the mating system.

Methods

We tested the association between ploidy (haploid, diploid or triploid gametophytes) and mating system in 21 populations of Atrichum undulatum sensu lato, where sex ratios vary widely. For each population, we measured the sex ratio, estimated selfing rates using allozyme markers and determined the level of ploidy through flow cytometry.

Key Results

Hermaphrodites in A. undulatum were either diploid or triploid. However, many diploid populations were strictly separate-sexed, suggesting that hermaphroditism is not a necessary result of genome doubling. Levels of selfing were strongly supported as being greater than zero in one population with strictly separate-sexed individuals, and one-third of populations with hermaphrodites.

Conclusions

Although hermaphrodites are associated with triploidy, hermaphroditism is not a necessary outcome of genome duplication. Hermaphroditism, but not genome duplication alone, increased estimated selfing rates, probably due to the occurrence of selfing within a gametophyte. Thus, genome duplication can influence the mating system and the associated evolution and maintenance of reproductive traits.  相似文献   

7.

Background and Aims

Interspecific hybridization and polyploidy are key processes in plant evolution and are responsible for ongoing genetic diversification in the genus Sorbus (Rosaceae). The Avon Gorge, Bristol, UK, is a world ‘hotspot’ for Sorbus diversity and home to diploid sexual species and polyploid apomictic species. This research investigated how mating system variation, hybridization and polyploidy interact to generate this biological diversity.

Methods

Mating systems of diploid, triploid and tetraploid Sorbus taxa were analysed using pollen tube growth and seed set assays from controlled pollinations, and parent–offspring genotyping of progeny from open and manual pollinations.

Key Results

Diploid Sorbus are outcrossing and self-incompatible (SI). Triploid taxa are pseudogamous apomicts and genetically invariable, but because they also display self-incompatibility, apomictic seed set requires pollen from other Sorbus taxa – a phenomenon which offers direct opportunities for hybridization. In contrast tetraploid taxa are pseudogamous but self-compatible, so do not have the same obligate requirement for intertaxon pollination.

Conclusions

The mating inter-relationships among Avon Gorge Sorbus taxa are complex and are the driving force for hybridization and ongoing genetic diversification. In particular, the presence of self-incompatibility in triploid pseudogamous apomicts imposes a requirement for interspecific cross-pollination, thereby facilitating continuing diversification and evolution through rare sexual hybridization events. This is the first report of naturally occurring pseudogamous apomictic SI plant populations, and we suggest that interspecific pollination, in combination with a relaxed endosperm balance requirement, is the most likely route to the persistence of these populations. We propose that Avon Gorge Sorbus represents a model system for studying the establishment and persistence of SI apomicts in natural populations.  相似文献   

8.

Background and Aims

The frequency at which males can be maintained with hermaphrodites in androdioecious populations is predicted to depend on the selfing rate, because self-fertilization by hermaphrodites reduces prospective siring opportunities for males. In particular, high selfing rates by hermaphrodites are expected to exclude males from a population. Here, the first estimates are provided of the mating system from two wild hexaploid populations of the androdioecious European wind-pollinated plant M. annua with contrasting male frequencies.

Methods

Four diploid microsatellite loci were used to genotype 19–20 progeny arrays from two populations of M. annua, one with males and one without. Mating-system parameters were estimated using the program MLTR.

Key Results

Both populations had similar, intermediate outcrossing rates (tm = 0·64 and 0·52 for the population with and without males, respectively). The population without males showed a lower level of correlated paternity and biparental inbreeding and higher allelic richness and gene diversity than the population with males.

Conclusions

The results demonstrate the utility of new diploid microsatellite loci for mating system analysis in a hexaploid plant. It would appear that androdioecious M. annua has a mixed-mating system in the wild, an uncommon finding for wind-pollinated species. This study sets a foundation for future research to assess the relative importance of the sexual system, plant-density variation and stochastic processes for the regulation of male frequencies in M. annua over space and time.  相似文献   

9.

Background and Aims

Edible bananas originated mainly from two wild species, Musa acuminata Colla (AA) and Musa balbisiana Colla (BB), and triploid cultivars with an AAA, AAB or ABB genome are the most widely used. In the present study, chromosome pairing affinities are investigated in a sterile AB Indian variety and in its fertile colchicine-induced allotetraploid (AABB) derivative to determine the inheritance pattern of the tetraploid genotype. The potential implications of interspecific recombination and chromosomal composition of diploid gametes for Musa improvement are presented.

Methods

The pairing of different chromosome sets at diploid and tetraploid levels was investigated through a combination of conventional cytogenetic and genomic in-situ hybridization (GISH) analyses of meiotic chromosomes, leading to a likelihood model of the pairing behaviour. GISH analysis of mitotic chromosomes was also conducted to reveal the chromosome constitution of hybrids derived from crosses involving the allotetraploid genotype.

Key Results

Analysis of chromosome associations at both ploidy levels suggested that the newly formed allotetraploid behaves as a ‘segmental allotetraploid’ with three chromosome sets in a tetrasomic pattern, three sets in a likely disomic pattern and the five remaining sets in an intermediate pattern. Balanced and unbalanced diploid gametes were detected in progenies, with the chromosome constitution appearing to be more homogenous in pollen than in ovules.

Conclusions

Colchicine-induced allotetraploids in Musa provide access to the genetic background of natural AB varieties. The segmental inheritance pattern exhibited by the AABB allotetraploid genotype implies chromosome exchanges between M. acuminata and M. balbisiana species and opens new horizons for reciprocal transfer of valuable alleles.  相似文献   

10.

Background and Aims

Successful establishment of newly formed polyploid species depends on several interlinked genetic and ecological factors. These include genetic diversity within and among individuals, chromosome behaviour and fertility, novel phenotypes resulting from novel genomic make-up and expression, intercytotypic and interspecific competition, and adaptation to distinct habitats. The allotetraploid rock fern Asplenium majoricum is known from one small population in Valencia, Spain, and several larger populations on the Balearic island of Majorca. In Valencia, it occurs sympatrically with its diploid parents, A. fontanum subsp. fontanum and A. petrarchae subsp. bivalens, and their diploid hybrid A. × protomajoricum. This highly unusual situation allowed the study of polyploid genetic diversity and its relationship to the formation and establishment of nascent polyploid lineages.

Methods

Genetic variation for isozyme and chloroplast DNA markers was determined for A. majoricum and A. × protomajoricum sampled thoroughly from known sites in Majorca and Valencia. Results were compared with variation determined previously for the diploid parent taxa.

Key Results

A highly dynamic system with recurring diploid hybrid and allotetraploid formation was discovered. High diversity in the small Valencian A. majoricum population indicates multiple de novo origins from diverse parental genotypes, but most of these lineages become extinct without becoming established. The populations on Majorca most probably represent colonization(s) from Valencia rather than an in situ origin. Low genetic diversity suggests that this colonization may have occurred only once.

Conclusions

There is a striking contrast in success of establishment of the Majorcan and Valencian populations of A. majoricum. Chance founding of populations in a habitat where neither A. fontanum subsp. fontanum nor A. petrarchae subsp. bivalens occurs appears to have been a key factor enabling the establishment of A. majoricum on Majorca. Successful establishment of this polyploid is probably dependent on geographic isolation from diploid progenitor competition.  相似文献   

11.

Background and Aims

Experimental crosses between the diploid woodland strawberry (Fragaria vesca L.) and the octoploid garden strawberry (F. × ananassa Duch.) can lead to the formation of viable hybrids. However, the extent of such hybrid formation under natural conditions is unknown, but is of fundamental interest and importance in the light of the potential future cultivation of transgenic strawberries. A hybrid survey was therefore conducted in the surroundings of ten farms in Switzerland and southern Germany, where strawberries have been cultivated for at least 10 years and where wild strawberries occur in the close vicinity.

Methods

In 2007 and 2008, 370 wild F. vesca plants were sampled at natural populations around farms and analysed with microsatellite markers. In 2010, natural populations were revisited and morphological traits of 3050 F. vesca plants were inspected. DNA contents of cell nuclei of morphologically deviating plants were estimated by flow cytometry to identify hybrids. As controls, 50 hybrid plants from interspecific hand-crosses were analysed using microsatellite analysis and DNA contents of cell nuclei were estimated by flow cytometry.

Key Results

None of the wild samples collected in 2007 and 2008 contained F. × ananassa microsatellite markers, while all hybrids from hand-crosses clearly contained markers of both parent species. Morphological inspection of wild populations carried out in 2010 and subsequent flow cytometry of ten morphologically deviating plants revealed no hybrids.

Conclusions

Hybrid formation or hybrid establishment in natural populations in the survey area is at best a rare event.  相似文献   

12.

Background and Aims

Patterns of ploidy variation among and within populations can provide valuable insights into the evolutionary mechanisms shaping the dynamics of plant systems showing ploidy diversity. Whereas data on majority ploidies are, by definition, often sufficiently extensive, much less is known about the incidence and evolutionary role of minority cytotypes.

Methods

Ploidy and proportions of endoreplicated genome were determined using DAPI (4'',6-diamidino-2-phenylindole) flow cytometry in 6150 Gymnadenia plants (fragrant orchids) collected from 141 populations in 17 European countries. All widely recognized European species, and several taxa of less certain taxonomic status were sampled within Gymnadenia conopsea sensu lato.

Key Results

Most Gymnadenia populations were taxonomically and/or ploidy heterogeneous. Two majority (2x and 4x) and three minority (3x, 5x and 6x) cytotypes were identified. Evolution largely proceeded at the diploid level, whereas tetraploids were much more geographically and taxonomically restricted. Although minority ploidies constituted <2 % of the individuals sampled, they were found in 35 % of populations across the entire area investigated. The amount of nuclear DNA, together with the level of progressively partial endoreplication, separated all Gymnadenia species currently widely recognized in Europe.

Conclusions

Despite their low frequency, minority cytotypes substantially increase intraspecific and intrapopulation ploidy diversity estimates for fragrant orchids. The cytogenetic structure of Gymnadenia populations is remarkably dynamic and shaped by multiple evolutionary mechanisms, including both the ongoing production of unreduced gametes and heteroploid hybridization. Overall, it is likely that the level of ploidy heterogeneity experienced by most plant species/populations is currently underestimated; intensive sampling is necessary to obtain a holistic picture.  相似文献   

13.

Background and Aims

Interspecific gene flow can occur in many combinations among species within the genus Quercus, but simultaneous hybridization among more than two species has been rarely analysed. The present study addresses the genetic structure and morphological variation in a triple hybrid zone formed by Q. hypoleucoides, Q. scytophylla and Q. sideroxyla in north-western Mexico.

Methods

A total of 247 trees from ten reference and 13 presumed intermediate populations were characterized using leaf shape variation and geometric morphometrics, and seven nuclear microsatellites as genetic markers. Discriminant function analysis was performed for leaf shape variation, and estimates of genetic diversity and structure, and individual Bayesian genetic assignments were obtained.

Key Results

Reference populations formed three completely distinct groups according to discriminant function analysis based on the morphological data, and showed low, but significant, genetic differentiation. Populations from the zone of contact contained individuals morphologically intermediate between pairs of species in different combinations, or even among the three species. The Bayesian admixture analysis found that three main genetic clusters best fitted the data, with good correspondence of reference populations of each species to one of the genetic clusters, but various degrees of admixture evidenced in populations from the contact area.

Conclusions

The three oak species have formed a complex hybrid zone that is geographically structured as a mosaic, and comprising a wide range of genotypes, including hybrids between different species pairs, backcrosses and probable triple hybrids.  相似文献   

14.

Background and Aims

Genome duplication is a central process in plant evolution and contributes to patterns of variation in genome size within and among lineages. Studies that combine cytogeography with genome size measurements contribute to our basic knowledge of cytotype distributions and their associations with variation in genome size.

Methods

Ploidy and genome size were assessed with direct chromosome counts and flow cytometry for 78 populations within the Claytonia perfoliata complex, comprised of three diploid taxa with numerous polyploids that range to the decaploid level. The relationship between genome size and temperature and precipitation was investigated within and across cytotypes to test for associations between environmental factors and nuclear DNA content.

Key Results

A euploid series (n = 6) of diploids to octoploids was documented through chromosome counts, and decaploids were suggested by flow cytometry. Increased variation in genome size among populations was found at higher ploidy levels, potentially associated with differential contributions of diploid parental genomes, variation in rates of genomic loss or gain, or undetected hybridization. Several accessions were detected with atypical genome sizes, including a diploid population of C. parviflora ssp. grandiflora with an 18 % smaller genome than typical, and hexaploids of C. perfoliata and C. parviflora with genomes 30 % larger than typical. There was a slight but significant association of larger genome sizes with colder winter temperature across the C. perfoliata complex as a whole, and a strong association between lower winter temperatures and large genome size for tetraploid C. parviflora.

Conclusions

The C. perfoliata complex is characterized by polyploids ranging from tetraploid to decaploid, with large magnitude variation in genome size at higher ploidy levels, associated in part with environmental variation in temperature.  相似文献   

15.

Background and Aims

Interspecific Diphasiastrum hybrids have been assumed to be homoploid and to produce well-formed spores serving sexual reproduction. If this were the case, forms intermediate between hybrids and parents or hybrid swarms should be expected. The purpose of this study was: (1) to check whether homoploidy consistently applies to the three hybrids throughout their Central European range; (2) to examine whether their genome sizes confirm their parentage as assumed by morphology; and (3) to perform a screening for detection of ploidy levels other than diploid and variation in DNA content due to backcrossing.

Methods

Flow cytometry was used first to measure the relative DNA values [with 4′,6-diamidino-2-phenylindole (DAPI) staining] and ploidy level as a general screening, and secondly to determine the absolute DNA 2C values [with propidium iodide (PI) staining] in a number of selected samples with the main focus on the hybrids.

Key Results

A considerable variation of DNA 2C values (5·26–7·52 pg) was detected between the three European Diphasiastrum species. The values of the diploid hybrids are highly constant without significant variation between regions. They are also intermediate between their assumed parents and agree closely with those calculated from their putative parents. This confirms their hybrid origin, assumed parentage and homoploid status. Considerably higher DNA amounts (9·48–10·30 pg) were obtained for three populations, suggesting that these represent triploid hybrids, an interpretation that is strongly supported by their morphology.

Conclusions

Diploid hybrids have retained their genetic and morphological identites throughout their Central European range, and thus no indications for diploid backcrossing were found. The triploid hybrids have probably originated from backcrossing between a diploid gametophyte of a hybrid (derived from a diplospore) and a haploid gametophyte of a diploid parental species. By repeated crossing events, reticulate evolution patterns arise that are similar to those known for a number of ferns.  相似文献   

16.

Background and Aims

Investigating intraspecific karyotypic and genetic variations jointly can provide unique insights into how historical, ecological and cytogenetic factors influence microevolution. A coastal herb, Lysimachia mauritiana, exhibits extensive karyotypic polymorphism and displays a complex cytogeographic pattern across the Ryukyus. To explore whether a similar degree of chromosomal variation exists south of the Ryukyus, and in an attempt to ascertain the mechanisms that may have generated the patterns, comprehensive sampling was conducted in Taiwan.

Methods

Karyotypes were analysed at mitotic metaphase for 550 individuals from 42 populations throughout Taiwan Proper and its adjacent islands. In addition, genetic variation was estimated using 12 allozymes (21 loci) of 314 individuals sampled from 12 localities.

Key Results

Four chromosome numbers and eight cytotypes, including four endemic cytotypes, were detected. Cytotype distributions were highly structured geographically, with single cytotypes present in most populations and four major cytotypes dominating the north, east and south of Taiwan and the Penghu Archipelago. Allozyme variation was very low and F-statistics indicated an extremely high level of population differentiation, implying limited gene flow among populations. Cluster analysis of allozyme variation uncovered four geographic groups, each corresponding perfectly to the four dominant cytotypes. The geographic structure of cytotype distribution and allozyme variation probably resulted from severe genetic drift triggered by genetic bottlenecks, suggesting that Taiwanese populations were likely to be derived from four independent founder events. In the few localities with multiple cytotypes, cytogeographic patterns and inferences of chromosomal evolution revealed a trend of northward dispersal, consistent with the course of the Kuroshio Current that has been influential in shaping the coastal biota of the region.

Conclusions

The data elucidate the patterns of colonization and the effects of the Kuroshio Current on the distribution of L. mauritiana in Taiwan. These inferences are highly relevant to other coastal plant species in the region and will stimulate further studies.  相似文献   

17.

Background and Aims

Two closely related, wild tomato-like nightshade species, Solanum lycopersicoides and Solanum sitiens, inhabit a small area within the Atacama Desert region of Peru and Chile. Each species possesses unique traits, including abiotic and biotic stress tolerances, and can be hybridized with cultivated tomato. Conservation and utilization of these tomato relatives would benefit from an understanding of genetic diversity and relationships within and between populations.

Methods

Levels of genetic diversity and population genetic structure were investigated by genotyping representative accessions of each species with a set of simple sequence repeat (SSR) and allozyme markers.

Key Results

As expected for self-incompatible species, populations of S. lycopersicoides and S. sitiens were relatively diverse, but contained less diversity than the wild tomato Solanum chilense, a related allogamous species native to this region. Populations of S. lycopersicoides were slightly more diverse than populations of S. sitiens according to SSRs, but the opposite trend was found with allozymes. A higher coefficient of inbreeding was noted in S. sitiens. A pattern of isolation by distance was evident in both species, consistent with the highly fragmented nature of the populations in situ. The populations of each taxon showed strong geographical structure, with evidence for three major groups, corresponding to the northern, central and southern elements of their respective distributions.

Conclusions

This information should be useful for optimizing regeneration strategies, for sampling of the populations for genes of interest, and for guiding future in situ conservation efforts.  相似文献   

18.
19.

Background and Aims

Polyploidy is a major component of plant evolution. The citrus gene pool is essentially diploid but tetraploid plants are frequently encountered in seedlings of diploid apomictic genotypes. The main objectives of the present study were to establish the origin of these tetraploid plants and to ascertain the importance of genotypic and environmental factors on tetraploid formation.

Methods

Tetraploid seedlings from 30 diploid apomictic genotypes were selected by flow cytometry and genotyped with 24 single sequence repeat (SSR) markers to analyse their genetic origin. Embryo rescue was used to grow all embryos contained in polyembryonic seeds of ‘Tardivo di Ciaculli’ mandarin, followed by characterization of the plantlets obtained by flow cytometry and SSR markers to accurately establish the rate of tetraploidization events and their potential tissue location. Inter-annual variations in tetraploid seedling rates were analysed for seven genotypes. Variation in tetraploid plantlet rates was analysed between different seedlings of the same genotype (‘Carrizo’ citrange; Citrus sinensis × Poncirus trifoliata) from seeds collected in different tropical, subtropical and Mediterranean countries.

Key Results

Tetraploid plants were obtained for all the studied diploid genotypes, except for four mandarins. All tetraploid plants were identical to their diploid maternal line for SSR markers and were not cytochimeric. Significant genotypic and environmental effects were observed, as well as negative correlation between mean temperature during the flowering period and tetraploidy seedling rates. The higher frequencies (20 %) of tetraploids were observed for citranges cultivated in the Mediterranean area.

Conclusions

Tetraploidization by chromosome doubling of nucellar cells are frequent events in apomictic citrus, and are affected by both genotypic and environmental factors. Colder conditions in marginal climatic areas appear to favour the expression of tetraploidization. Tetraploid genotypes arising from chromosome doubling of apomictic citrus are extensively being used as parents in breeding programmes to develop seedless triploid cultivars and have potential direct use as new rootstocks.  相似文献   

20.

Background

The Lathyrus genus includes 160 species, some of which have economic importance as food, fodder and ornamental crops (mainly L. sativus, L. cicera and L. odoratus, respectively) and are cultivated in >1·5 Mha worldwide. However, in spite of their well-recognized robustness and potential as a source of calories and protein for populations in drought-prone and marginal areas, cultivation is in decline and there is a high risk of genetic erosion.

Scope

In this review, current and past taxonomic treatments of the Lathyrus genus are assessed and its current status is examined together with future prospects for germplasm conservation, characterization and utilization. A particular emphasis is placed on the importance of diversity analysis for breeding of L. sativus and L. cicera.

Conclusions

Efforts for improvement of L. sativus and L. cicera should concentrate on the development of publicly available joint core collections, and on high-resolution genotyping. This will be critical for permitting decentralized phenotyping. Such a co-ordinated international effort should result in more efficient and faster breeding approaches, which are particularly needed for these neglected, underutilized Lathyrus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号