首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In arthropods, melanization plays a major role in the innate immune response to encapsulate and kill the invasive organisms. It is mediated by a serine protease cascade and is regulated by serpins. The identification of the molecular components of melanization and the regulation of those components are still unclear in Drosophila melanogaster, although some genetic research on the activation of melanization has been reported. Here we report that Drosophila serine protease MP2 directly cleaves both recombinant and native prophenoloxidase-1. Overexpression or repression of MP2 in flies resulted in increased and decreased rates of cleavage, respectively, of prophenoloxidase-1. Moreover, serine protease inhibitor Spn27A formed SDS-stable complexes with MP2, both in vitro and in vivo. The amidase activity of MP2 was inhibited efficiently by Spn27A. Spn27A also prevented MP2 from cleaving prophenoloxidase-1. Taken together, these results indicate that under our experimental conditions MP2 functions as a prophenoloxidase-activating protease, and that this function is inhibited by Spn27A. MP2 and Spn27A thus constitute a regulatory unit in the prophenoloxidase activation cascade in Drosophila. The combination of genetic, molecular genetic and biochemical approaches should allow further advances in our understanding of the prophenoloxidase-activating cascade in insects and indirectly shed further light on protease-cascades in humans and other vertebrates.  相似文献   

2.
3.
通过DEAESephadexA 5 0阴离子交换、超细SephadexG 10 0分子筛和反相高效液相C4 色谱层析 ,从菜花烙铁头蛇毒冻干粉中纯化出一种具有激肽释放酶活性和α纤维蛋白原溶酶活性的丝氨酸蛋白酶 ,命名为Jerdonase。在 12 .5 %胶浓度的SDS还原电泳条件下 ,该酶分子量大约为 5 5kD ,在非还原电泳条件下 ,分子量大约为 5 3kD。此酶是一种糖蛋白 ,含有约 35 .8%的中性糖。它的N末端氨基酸序列为IIGGDEENINEHPFLVALYDA ,其序列和蛇毒中其他丝氨酸蛋白酶具有非常高的序列相似性。Jerdonase能够催化BAEE、S 2 2 38和S 2 30 2的水解 ,其水解活性可被PMSF抑制 ,但是EDTA对此没有影响。Jerdonase能优先水解人纤维蛋白原的Aα链 ,同时伴随有微弱的Bβ链水解活性。另外 ,此酶能够水解牛低分子量的激肽原 ,释放舒缓激肽。总之 ,所有的结果表明Jerdonase是一个具有多功能活性的蛇毒丝氨酸蛋白酶  相似文献   

4.
Root knot nematodes (RKNs) are the world''s most damaging plant-parasitic nematodes (PPNs), and they can infect almost all crops. At present, harmful chemical nematicides are applied to control RKNs. Using microbial nematicides has been proposed as a better management strategy than chemical control. In this study, we describe a novel nematicidal bacterium named Alcaligenes faecalis ZD02. A. faecalis ZD02 was isolated from Caenorhabditis elegans cadavers and has nematostatic and nematicidal activity, as confirmed by C. elegans growth assay and life span assay. In addition, A. faecalis ZD02 fermentation broth showed toxicity against C. elegans and Meloidogyne incognita. To identify the nematicidal virulence factor, the genome of strain ZD02 was sequenced. By comparing all of the predicted proteins of strain ZD02 to reported nematicidal virulence factors, we determined that an extracellular serine protease (Esp) has potential to be a nematicidal virulence factor, which was confirmed by bioassay on C. elegans and M. incognita. Using C. elegans as the target model, we found that both A. faecalis ZD02 and the virulence factor Esp can damage the intestines of C. elegans. The discovery that A. faecalis ZD02 has nematicidal activity provides a novel bacterial resource for the control of RKNs.  相似文献   

5.

Background

Serine proteases are a major component of viper venoms and are thought to disrupt several distinct elements of the blood coagulation system of envenomed victims. A detailed understanding of the functions of these enzymes is important both for acquiring a fuller understanding of the pathology of envenoming and because these venom proteins have shown potential in treating blood coagulation disorders.

Methodology/Principal Findings

In this study a novel, highly abundant serine protease, which we have named rhinocerase, has been isolated and characterised from the venom of Bitis gabonica rhinoceros using liquid phase isoelectric focusing and gel filtration. Like many viper venom serine proteases, this enzyme is glycosylated; the estimated molecular mass of the native enzyme is approximately 36kDa, which reduces to 31kDa after deglycosylation. The partial amino acid sequence shows similarity to other viper venom serine proteases, but is clearly distinct from the sequence of the only other sequenced serine protease from Bitis gabonica. Other viper venom serine proteases have been shown to exert distinct biological effects, and our preliminary functional characterization of rhinocerase suggest it to be multifunctional. It is capable of degrading α and β chains of fibrinogen, dissolving plasma clots and of hydrolysing a kallikrein substrate.

Conclusions/Significance

A novel multifunctional viper venom serine protease has been isolated and characterised. The activities of the enzyme are consistent with the known in vivo effects of Bitis gabonica envenoming, including bleeding disorders, clotting disorders and hypotension. This study will form the basis for future research to understand the mechanisms of serine protease action, and examine the potential for rhinocerase to be used clinically to reduce the risk of human haemostatic disorders such as heart attacks and strokes.  相似文献   

6.
As a comparison to a similar study on Photorhabdus strains, 15 Xenorhabdus bacterial strains and secondary phenotypic variants of two strains were screened for proteolytic activity by five detection methods. Although the number and intensity of proteolytic activities were different, every strain was positive for proteolytic activity by several tests. Zymography following native PAGE detected two groups of activities with different substrate affinities and a higher and lower electrophoretic mobility that were distinguished as activity 1 and 2, respectively. Zymography following SDS-PAGE resolved three activities, which were provisionally named proteases A, B, and C. Only protease B, an ∼55-kDa enzyme, was produced by every strain. This enzyme exhibited higher affinity to the gelatin substrate than to the casein substrate. Of the chromogenic substrates used, three were hydrolyzed: furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY), Fua-LGPA (LGPA is Leu-Gly-Pro-Ala) (a substrate for collagen peptidases), and succinyl-Ala-Ala-Pro-Phe-thiobenzyl (Succ-AAPF-SBzl). All but the Fua-LGPA-ase activity seemed to be from secreted enzymes. According to their substrate preference profiles and inhibitor sensitivities, at least six such proteolytic enzymes could be distinguished in the culture medium of Xenorhabdus strains. The proteolytic enzyme that was secreted the earliest, protease B and the Succ-AAPF-SBzl-hydrolyzing enzyme, appeared from the early logarithmic phase of growth. Protease B could also be detected in the hemolymph of Xenorhabdus-infected Galleria mellonella larvae from 15 h postinfection. The purified protease B hydrolyzed in vitro seven proteins in the hemolymph of Manduca sexta that were also cleaved by PrtA peptidase from Photorhabdus. The N-terminal sequence of protease B showed similarity to a 55-kDa serralysin type metalloprotease in Xenorhabdus nematophila, which had been identified as an orthologue of Photorhabdus PrtA peptidase.Xenorhabdus and Photorhabdus bacteria are highly virulent, fatal pathogens for insects. Phylogenetically, they are sister genera in the family Enterobacteriaceae (3, 4). There are some differences between Xenorhabdus and Photorhabdus in their biology (e.g., light production), and they also differ in their interaction with their symbiotic nematode partners, which are in the Steinernematidae and Heterorhabditidae genera, respectively (8, 9). At the same time, they also have several properties in common. For example, due to their similar strategy of infection, their entrance into the hemocoel is absolutely dependent on the invasion of insects by their symbiotic nematode partners. An interesting feature of both genera is that they have two phenotypic (form) variants, primary and secondary (9). The primary form is natural, while the secondary form can be observed (generated) mostly in the laboratory. They differ in, for example, antibiotic production, outer membrane proteins, and cell surface structures (fimbriae and flagellae [23], symbiotic capabilities with nematode partners, and exoenzyme production [9]). The secondary form variants were found, with nonbiochemical detection methods, to produce less or no proteolytic activity compared to the primary phenotypic variants (see references 9 and 23 and references therein). The high pathogenicity makes Xenorhabdus and Photorhabdus good model organisms of infection, which can be exploited—by studying the function of their virulence factors—for the investigation of the immune system of insects and the mechanisms the pathogens use to cope with the immune defense of hosts. The comparative analysis of these bacterial partners provides an opportunity to study the question of how similar the infection mechanisms can be at the molecular level of two evolutionarily different insect pathogen bacterium-nematode complexes that, at the same time, have similar infection strategies.Of the virulence factors, we have been interested in secreted proteases that may be used by the pathogens during the first stage of infection in the penetration of the tissues of host or in the suppression of its immune response. The secretion and biochemistry of these enzymes are better studied in Photorhabdus, where four secreted proteases could be detected in a screen of 20 strains by a combination of five methods (15). The earliest secreted Photorhabdus protease is PrtA peptidase, a metzincin in the M10B family of serralysins. The others are PhpC (Photorhabdus protease C), which belongs to the M4 metallopeptidase family of thermolysin-like proteases, OpdA, a collagen peptidase in the family of thimet oligopeptidases and PhpD, a furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY)-cleaving enzyme, the identity of which is still unknown. In contrast, although a number of Xenorhabdus strains were tested for proteolytic activity with simple bacteriological plate assays (2, 25), only one (Xenorhabdus nematophila) was investigated by a biochemical detection method of protease activities, zymography. Two activities have been found by this method, and one of these activities has been partially characterized (5).As an approach to establish the similarity between Xenorhabdus and Photorhabdus in the mechanism of infection regarding the type and role of proteolytic enzymes, we investigated 15 Xenorhabdus strains for the secretion of proteases employing the same five detection methods that we had previously used for Photorhabdus strains. Two of the strains (Xenorhabdus nematophila AN6 and Xenorhabdus cabanillassii RIO-HU) were represented with their phenotypic variant pairs.  相似文献   

7.
8.
Snake venom serine proteinases (SVSPs) affect various physiological functions including blood coagulation, fibrinolysis, and platelet aggregation. Coagulant serine proteinase (VLCII) was purified from Vipera lebetina venom using three chromatographic steps: gel filtration on SephadexG‐75, DEAE‐Sephadex A‐50, and reversed‐phase high‐performance liquid chromatography (RP‐HPLC) on C8 column. VLCII appeared homogenous (60 kDa) when tested on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE). VLCII as a thrombin‐like enzyme was able to hydrolyze Nα‐CBZ L‐arginine‐p‐nitroanilide hydrochloride and could be a serine protease because it is inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of VLCII was not affected by ethylenediaminetetraacetic acid and 1.10‐phenanthroline. It showed high coagulant activity against human plasma and cleaved both Aα chain and Bβ chain of bovine fibrinogen. The isolated VLCII displayed proaggregating effect on human platelet in a concentration‐dependent manner with an absence of lag time. Clopidogrel P2Y12 adenosine diphosphate (ADP) receptor inhibitor reduced markedly the aggregating effect induced by VLCII than aspirin, indicating the involvement of ADP signaling pathway.  相似文献   

9.
10.
The entomopathogenic fungus Beauveria bassiana acts slowly on insect pests through cuticle infection. Vegetative insecticidal proteins (Vip3A) of Bacillus thuringiensis kill lepidopteran pests rapidly, via per os infection, but their use for pest control is restricted to integration into transgenic plants. A transgenic B. bassiana strain (BbV28) expressing Vip3Aa1 (a Vip3A toxin) was thus created to infect the larvae of the oriental leafworm moth Spodoptera litura through conidial ingestion and cuticle adhesion. Vip3Aa1 (∼88 kDa) was highly expressed in the conidial cytoplasm of BbV28 and was detected as a digested form (∼62 kDa) in the larval midgut 18 and 36 h after conidial ingestion. The median lethal concentration (LC50) of BbV28 against the second-instar larvae feeding on cabbage leaves sprayed with conidial suspensions was 26.2-fold lower than that of the wild-type strain on day 3 and 1.1-fold lower on day 7. The same sprays applied to both larvae and leaves for their feeding reduced the LC50 of the transformant 17.2- and 1.3-fold on days 3 and 7, respectively. Median lethal times (LT50s) of BbV28 were shortened by 23 to 35%, declining with conidial concentrations. The larvae infected by ingestion of BbV28 conidia showed typical symptoms of Vip3A action, i.e., shrinkage and palsy. However, neither LC50 nor LT50 trends differed between BbV28 and its parental strain if the infection occurred through the cuticle only. Our findings indicate that fungal conidia can be used as vectors for spreading the highly insecticidal Vip3A protein for control of foliage feeders such as S. litura.Entomopathogenic fungi, such as Beauveria bassiana and Metarhizium anisopliae, infect hosts through the cuticle and are classic biocontrol agents used against insect pests with either chewing or sucking mouthparts (3, 10, 25, 31). However, their action on target pests is quite slow due to a latent period of several days. This slow action is an obstacle to commercial development of mycoinsecticides (11, 29).Fungal infection starts from the adhesion of conidia to the host cuticle, followed by germination and cuticle penetration into the hemocoel, where fungal cells are propagated by budding until the mycosis-affected host dies from nutrition depletion (10). Conidia ingested by foliage feeders, such as caterpillars, rarely cause substantial infection before excretion due to the lack of intestine-specific virulence factors (29). For this reason, fungal agents are often not very effective against leaf-ingesting insects, which are still able to cause considerable damages before dying of mycosis. Thus, efforts have been increasing to enhance fungal virulence by genetic manipulation. Fungal infection of aphids was accelerated by overexpressing a silkworm chitinase or a hybrid chitinase in B. bassiana (6, 8). Integration of a scorpion neurotoxin in M. anisopliae for specific expression in insect hemolymph after cuticle penetration resulted in 22-, 9-, and 16-fold increases of fungal toxicity to the tobacco hornworm Manduca sexta, the yellow fever mosquito Aedes aegypti, and the coffee berry borer Hypothenemus hampei, respectively (21, 33). Similarly, B. bassiana expressing the scorpion neurotoxin showed a 15-fold increase of insecticidal activity against Masson''s pine caterpillar (Dendrolimus punctatus), and its action on the larvae of D. punctatus and Galleria mellonella was accelerated 24 and 40% (17), respectively. These studies have shed light upon the feasibility of enhancing fungal biocontrol potential by gene transformation. However, none of the genes transformed into the fungal pathogens was an intestine-specific virulence factor to enhance fungal infection per os, although foliage feeders may ingest a large number of conidia sprayed on crop leaves.Vegetative insecticidal proteins (Vips) are a novel class of toxins secreted by Bacillus thuringiensis at the stages of vegetative and stationary growth and show insecticidal activities only in insect intestines (26). Among these, Vip3A has been proven to kill a broad spectrum of lepidopteran insects (2, 5, 18, 19, 26) and may overcome pest resistance to Bacillus thuringiensis endotoxins (Bt endotoxins) (4, 5). As an intestine-specific virulence factor, Vip3A lyses midgut epithelium cells of insects after ingestion (38), forming pores on the cell membrane (12, 13). Not surprisingly, the Vip-encoding genes are considered excellent candidates for new generation of transgenic crops (34). Transgenic plants expressing Vip3A not only exhibit high efficacy against the cotton bollworm Helicoverpa armigera (16, 32) but also are safe to vertebrates (1, 22). However, none of the Vip toxins has been developed commercially like Bt endotoxin formulations, perhaps largely due to their limited yield in cell cultures and an instability of their noncrystal structure. Thus, a new approach is needed to develop Vip-vectoring products for pest control.Fungal conidia can readily be mass produced on solid substrates, such as small grains (36), and usually are formulated as active ingredients of mycoinsecticides (3), making them potential vectors to carry the Vip toxins onto crop foliages by field spray. This study sought to express Vip3Aa1 toxin (a Vip3A member) in a wild-type strain of B. bassiana. Our goal was to enhance the insecticidal activity of transgenic conidia by per os infection in addition to normal cuticle infection. A genetically stable transformant expressing the toxin was generated and assayed for its oral and cuticle infectivity to the larvae of the oriental leafworm moth Spodoptera litura (Noctuidae) in parallel with the wild-type strain.  相似文献   

11.
Acid-sensing ion channel 1 (ASIC1) is a H+-gated channel of the amiloride-sensitive epithelial Na+ channel (ENaC)/degenerin family. ASIC1 is expressed mostly in the central and peripheral nervous system neurons. ENaC and ASIC function is regulated by several serine proteases. The type II transmembrane serine protease matriptase activates the prototypical αβγENaC channel, but we found that matriptase is expressed in glioma cells and its expression is higher in glioma compared with normal astrocytes. Therefore, the goal of this study was to test the hypothesis that matriptase regulates ASIC1 function. Matriptase decreased the acid-activated ASIC1 current as measured by two-electrode voltage clamp in Xenopus oocytes and cleaved ASIC1 expressed in oocytes or CHO K1 cells. Inactive S805A matriptase had no effect on either the current or the cleavage of ASIC1. The effect of matriptase on ASIC1 was specific, because it did not affect the function of ASIC2 and no matriptase-specific ASIC2 fragments were detected in oocytes or in CHO cells. Three matriptase recognition sites were identified in ASIC1 (Arg-145, Lys-185, and Lys-384). Site-directed mutagenesis of these sites prevented matriptase cleavage of ASIC1. Our results show that matriptase is expressed in glioma cells and that matriptase specifically cleaves ASIC1 in heterologous expression systems.  相似文献   

12.
Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA (cell wall-associated serine protease A), that contributed to virulence in models of pneumonia and intraperitoneal infection respectively. We here sought to identify additional S. pneumoniae serine proteases and determine their role in virulence. The S. pneumoniae D39 genome contains five putative serine proteases, of which HtrA, Subtilase Family Protein (SFP) and PrtA were selected for insertional mutagenesis because they are predicted to be secreted and surface exposed. Mutant D39 strains lacking serine proteases were constructed by in-frame insertion deletion mutagenesis. Pneumonia was induced by intranasal infection of mice with wild-type or mutant D39. After high dose infection, only D39ΔhtrA showed reduced virulence, as reflected by strongly reduced bacterial loads, diminished dissemination and decreased lung inflammation. D39ΔprtA induced significantly less lung inflammation together with smaller infiltrated lung surface, but without influencing bacterial loads. After low dose infection, D39ΔhtrA again showed strongly reduced bacterial loads; notably, pneumococcal burdens were also modestly lower in lungs after infection with D39Δsfp. These data confirm the important role for HtrA in S. pneumoniae virulence. PrtA contributes to lung damage in high dose pneumonia; it does not however contribute to bacterial outgrowth in pneumococcal pneumonia. SFP may facilitate S. pneumoniae growth after low dose infection.  相似文献   

13.
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.  相似文献   

14.
The Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes host proteases for virus entry into lung cells. In the current study, Vero cells constitutively expressing type II transmembrane serine protease (Vero-TMPRSS2 cells) showed larger syncytia at 18 h after infection with MERS-CoV than after infection with other coronaviruses. Furthermore, the susceptibility of Vero-TMPRSS2 cells to MERS-CoV was 100-fold higher than that of non-TMPRSS2-expressing parental Vero cells. The serine protease inhibitor camostat, which inhibits TMPRSS2 activity, completely blocked syncytium formation but only partially blocked virus entry into Vero-TMPRSS2 cells. Importantly, the coronavirus is thought to enter cells via two distinct pathways, one mediated by TMPRSS2 at the cell surface and the other mediated by cathepsin L in the endosome. Simultaneous treatment with inhibitors of cathepsin L and TMPRSS2 completely blocked virus entry into Vero-TMPRSS2 cells, indicating that MERS-CoV employs both the cell surface and the endosomal pathway to infect Vero-TMPRSS2 cells. In contrast, a single camostat treatment suppressed MERS-CoV entry into human bronchial submucosal gland-derived Calu-3 cells by 10-fold and virus growth by 270-fold, although treatment with both camostat and (23,25)-trans-epoxysuccinyl-l-leucylamindo-3-methylbutane ethyl ester, a cathepsin inhibitor, or treatment with leupeptin, an inhibitor of cysteine, serine, and threonine peptidases, was no more efficacious than treatment with camostat alone. Further, these inhibitors were not efficacious against MERS-CoV infection of MRC-5 and WI-38 cells, which were derived from lung, but these characters differed from those of mature pneumocytes. These results suggest that a single treatment with camostat is sufficient to block MERS-CoV entry into a well-differentiated lung-derived cell line.  相似文献   

15.

Background

Both Schistosoma mansoni and Schistosoma haematobium cause schistosomiasis in sub-Saharan Africa. We assessed the diagnostic value of selected Schistosoma antigens for the development of a multiplex serological immunoassay for sero-epidemiological surveillance.

Methodology/Principal Findings

Diagnostic ability of recombinant antigens from S. mansoni and S. haematobium was assessed by Luminex multiplex immunoassay using plasma from school children in two areas of Kenya, endemic for different species of schistosomiasis. S. mansoni serine protease inhibitor (SERPIN) and Sm-RP26 showed significantly higher reactivity to patient plasma as compared to the control group. Sm-Filamin, Sm-GAPDH, Sm-GST, Sm-LAP1, Sm-LAP2, Sm-Sm31, Sm-Sm32 and Sm-Tropomyosin did not show difference in reactivity between S. mansoni infected and uninfected pupils. Sm-RP26 was cross-reactive to plasma from S. haematobium patients, whereas Sm-SERPIN was species-specific. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. ROC analysis for Sm-RP26, Sm-SERPIN and Sh-SERPIN showed AUC values of 0.833, 0.888 and 0.947, respectively. Using Spearman’s rank correlation coefficient analysis, we also found significant positive correlation between the number of excreted eggs and median fluorescence intensity (MFI) from the multiplex immunoassays for Sm-SERPIN (ρ = 0.430, p-value = 0.003) and Sh-SERPIN (ρ = 0.433, p-value = 0.006).

Conclusions/Significance

Sm-SERPIN is a promising species-specific diagnostic antigen. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. SERPINs showed correlation with the number of excreted eggs. These indicate prospects for inclusion of SERPINs in the multiplex serological immunoassay system.  相似文献   

16.
The polymeric mucin component of the intestinal mucus barrier changes during nematode infection to provide not only physical protection but also to directly affect pathogenic nematodes and aid expulsion. Despite this, the direct interaction of the nematodes with the mucins and the mucus barrier has not previously been addressed. We used the well-established Trichuris muris nematode model to investigate the effect on mucins of the complex mixture of immunogenic proteins secreted by the nematode called excretory/secretory products (ESPs). Different regimes of T. muris infection were used to simulate chronic (low dose) or acute (high dose) infection. Mucus/mucins isolated from mice and from the human intestinal cell line, LS174T, were treated with ESPs. We demonstrate that serine protease(s) secreted by the nematode have the ability to change the properties of the mucus barrier, making it more porous by degrading the mucin component of the mucus gel. Specifically, the serine protease(s) acted on the N-terminal polymerising domain of the major intestinal mucin Muc2, resulting in depolymerisation of Muc2 polymers. Importantly, the respiratory/gastric mucin Muc5ac, which is induced in the intestine and is critical for worm expulsion, was protected from the depolymerising effect exerted by ESPs. Furthermore, serine protease inhibitors (Serpins) which may protect the mucins, in particular Muc2, from depolymerisation, were highly expressed in mice resistant to chronic infection. Thus, we demonstrate that nematodes secrete serine protease(s) to degrade mucins within the mucus barrier, which may modify the niche of the parasite to prevent clearance from the host or facilitate efficient mating and egg laying from the posterior end of the parasite that is in intimate contact with the mucus barrier. However, during a TH2-mediated worm expulsion response, serpins, Muc5ac and increased levels of Muc2 protect the barrier from degradation by the nematode secreted protease(s).  相似文献   

17.
18.
Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs.  相似文献   

19.
Baculoviruses are insect pathogens with a relatively slow speed of action, and this has limited their use as control agents of insect pests. Introduction into baculoviruses of genes which code for proteins interfering specifically with insect metabolism or metamorphosis, such as toxins, hormones, and enzymes, may enhance the pathogenicity of these viruses. The complete insecticidal crystal protein gene cryIA(b) of Bacillus thuringiensis subsp. aizawai 7.21 was engineered into the nuclear polyhedrosis virus of Autographa californica (AcNPV) in place of the polyhedrin gene. In infected Spodoptera frugiperda cells, the cryIA(b) gene was expressed at a high level without interference with AcNPV production. The crystal protein was found in the cytoplasm of S. frugiperda cells, mainly as large crystals with an ultrastructure similar to that of B. thuringiensis crystals. Infected-cell extracts inhibited feeding of the large cabbage white Pieris brassicae. The toxicity of the crystal protein expressed by AcNPV recombinants was comparable with that of the crystal protein expressed by a corresponding Escherichia coli recombinant.  相似文献   

20.
Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP3Rs) represents a mechanism for shaping intracellular Ca2+ signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca2+ release in cells that express predominantly InsP3R2. PKA is known to phosphorylate InsP3R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP3R2 in DT40-3KO cells that are devoid of endogenous InsP3R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca2+ signals and augmented the single channel open probability of InsP3R2. A PKA phosphorylation site unique to the InsP3R2 was identified at Ser937. The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser937, since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca2+ signaling following PKA activation in cells that express predominantly InsP3R2.Hormones, neurotransmitters, and growth factors stimulate the production of InsP33 and Ca2+ signals in virtually all cell types (1). The ubiquitous nature of this mode of signaling dictates that this pathway does not exist in isolation; indeed, a multitude of additional signaling pathways can be activated simultaneously. A prime example of this type of “cross-talk” between independently activated signaling systems results from the parallel activation of cAMP and Ca2+ signaling pathways (2, 3). Interactions between these two systems occur in numerous distinct cell types with various physiological consequences (36). Given the central role of InsP3R in Ca2+ signaling, a major route of modulating the spatial and temporal features of Ca2+ signals following cAMP production is potentially through PKA phosphorylation of the InsP3R isoform(s) expressed in a particular cell type.There are three InsP3R isoforms (InsP3R1, InsP3R2, and InsP3R3) expressed to varying degrees in mammalian cells (7, 8). InsP3R1 is the major isoform expressed in the nervous system, but it is less abundant compared with other subtypes in non-neuronal tissues (8). Ca2+ release via InsP3R2 and InsP3R3 predominate in these tissues. InsP3R2 is the major InsP3R isoform in many cell types, including hepatocytes (7, 8), astrocytes (9, 10), cardiac myocytes (11), and exocrine acinar cells (8, 12). Activation of PKA has been demonstrated to enhance InsP3-induced Ca2+ signaling in hepatocytes (13) and parotid acinar cells (4, 14). Although PKA phosphorylation of InsP3R2 is a likely causal mechanism underlying these effects, the functional effects of phosphorylation have not been determined in cells unambiguously expressing InsP3R2 in isolation. Furthermore, the molecular determinants of PKA phosphorylation of this isoform are not known.PKA-mediated phosphorylation is an efficient means of transiently and reversibly regulating the activity of the InsP3R. InsP3R1 was identified as a major substrate of PKA in the brain prior to its identification as the InsP3R (15, 16). However, until recently, the functional consequences of phosphorylation were unresolved. Initial conflicting results were reported indicating that phosphoregulation of InsP3R1 could result in either inhibition or stimulation of receptor activity (16, 17). Mutagenic strategies were employed by our laboratory to clarify this discrepancy. These studies unequivocally assigned phosphorylation-dependent enhanced Ca2+ release and InsP3R1 activity at the single channel level, through phosphorylation at canonical PKA consensus motifs at Ser1589 and Ser1755. The sites responsible were also shown to be specific to the particular InsP3R1 splice variant (18). These data were also corroborated by replacing the relevant serines with glutamates in a strategy designed to construct “phosphomimetic” InsP3R1 by mimicking the negative charge added by phosphorylation (19, 20). Of particular note, however, although all three isoforms are substrates for PKA, neither of the sites phosphorylated by PKA in InsP3R1 are conserved in the other two isoforms (21). Recently, three distinct PKA phosphorylation sites were identified in InsP3R3 that were in different regions of the protein when compared with InsP3R1 (22). To date, no PKA phosphorylation sites have been identified in InsP3R2.Interactions between Ca2+ and cAMP signaling pathways are evident in exocrine acinar cells of the parotid salivary gland. In these cells, both signals are important mediators of fluid and protein secretion (23). Multiple components of the [Ca2+]i signaling pathway in these cells are potential substrates for modulation by PKA. Previous work from this laboratory established that activation of PKA potentiates muscarinic acetylcholine receptor-induced [Ca2+]i signaling in mouse and human parotid acinar cells (4, 24, 25). A likely mechanism to explain this effect is that PKA phosphorylation increases the activity of InsP3R expressed in these cells. Consistent with this idea, activation of PKA enhanced InsP3-induced Ca2+ release in permeabilized mouse parotid acinar cells and also resulted in the phosphorylation of InsP3R2 (4).Invariably, prior work examining the functional effects of PKA phosphorylation on InsP3R2 has been performed using cell types expressing multiple InsP3R isoforms. For example, AR4-2J cells are the preferred cell type for examining InsP3R2 in relative isolation, because this isoform constitutes more than 85% of the total InsP3R population (8). InsP3R1, however, contributes up to ∼12% of the total InsP3R in AR4-2J cells. An initial report using InsP3-mediated 45Ca2+ flux suggested that PKA activation increased InsP3R activity in AR4-2J cells (21). A similar conclusion was made in a later study, which documented the effects of PKA activation on agonist stimulated Ca2+ signals in AR4-2J cells (26). Any effects of phosphorylation observed in these experiments could plausibly have resulted from phosphorylation of the residual InsP3R1.Although PKA enhances InsP3-induced calcium release in cells expressing predominantly InsP3R2, including hepatocytes, parotid acinar cells, and AR4-2J cells (4, 13, 21, 26, 27), InsP3R2 is not phosphorylated at stoichiometric levels by PKA (21). This observation has called into question the physiological significance of PKA phosphorylation of InsP3R2 (28). The apparent low levels of InsP3R2 phosphorylation are clearly at odds with the augmented Ca2+ release observed in cells expressing predominantly this isoform. The equivocal nature of these findings probably stems from the fact that, to date, all of the studies demonstrating positive effects of PKA activation on Ca2+ release were conducted in cells that also express InsP3R1. The purpose of the current experiments was to analyze the functional effects of phosphorylation on InsP3R2 expressed in isolation on a null background. We report that InsP3R2 activity is increased by PKA phosphorylation under these conditions, and furthermore, we have identified a unique phosphorylation site in InsP3R2 at Ser937. In total, these results provide a direct mechanism for the cAMP-induced activation of InsP3R2 via PKA phosphorylation of InsP3R2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号