首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The establishment and spread of non‐native, invasive shrubs in forests poses an important obstacle to natural resource conservation and management. This study assesses the impacts of the physical removal of a complex of woody invasive shrub species on deciduous forest understory resources. We compared leaf litter quantity and quality and understory light transmittance in five pairs of invaded and removal plots in an oak‐dominated suburban mature forest. Removal plots were cleared of all non‐native invasive shrubs. The invasive shrubs were abundant (143,456 stems/ha) and diverse, dominated by species in the genera Ligustrum, Viburnum, Lonicera, and Euonymus. Annual leaf litter biomass and carbon inputs of invaded plots were not different from removal plots due to low leaf litter biomass of invasive shrubs. Invasive shrub litter had higher nitrogen (N) concentrations than native species; however, low biomass of invasive litter led to low N inputs by litter of invasive species compared to native. Light transmittance at the forest floor and at 2 m was lower in invaded plots than in removal plots. We conclude that the removal of the abundant invasive shrubs from a native deciduous forest understory did not alter litter quantity or N inputs, one measure of litter quality, and increased forest understory light availability. More light in the forest understory could facilitate the restoration of forest understory dynamics.  相似文献   

2.
Few studies have examined the invasion of understory species into closed-canopy forests and, despite inter-specific differences in litter quality and quantity between understory and dominant canopy trees, the influence of understory invasions on soil nitrogen (N) cycling remains unknown. This paper examines litter quality and decomposition of kahili ginger (Hedychium gardnerianum), an invasive understory herb, to determine the influence of this species on N cycling in a Hawaiian montane rainforest. To examine the potential feedback between increased soil N availability and litter decomposition, litter from the invasive ginger, a native tree, and native tree fern was collected from unfertilized and fertilized plots and decomposed in a reciprocal transplant design. Hedychium litter decomposed faster than litter from the two native species. Across species, decomposition rates were negatively correlated with litter lignin content. Despite rapid decomposition rates of Hedychium litter, soil nitrogen availability and rates of net mineralization in the soil were similar in invaded and uninvaded plots. Nitrogen cycling at this site may be more strongly influenced by native species, which contribute the most to overall stand biomass. A negative effect of fertilization on the decomposition of Hedychium litter suggests that a negative feedback between litter quality and soil N availability may exist over longer timescales.  相似文献   

3.
The successful transplantation of indigenous tree seedlings into established plantations requires an understanding of the conditions required by the seedlings. We evaluated seedling morphological characteristics and seasonal growth of three indigenous tree species (Castanopsis chinensis, Michelia chapensis, and Psychotria rubra) that were transplanted into four plantations (eucalyptus, mixed-native, mixed-legume, mixed-conifer) in South China; in each plantation, two treatments (understory vegetation and litter retained or removed) were applied before the seedlings were transplanted. Seedling leaf morphological characteristics and biomass allocation were determined at the end of the experiment, and seedling relative growth rate as indicated by change in height (RGRh) was determined during the experiment. Whether understory vegetation and litter were removed or retained, RGRh tended to be higher in the wet season than in the dry season. Leaf morphological characteristics and biomass allocation were significantly affected by species identity. The effect of the understory vegetation and litter treatments on seedling morphological characteristics such as specific leaf area, leaf area ratio, and root weight to total biomass ratio depended on species identity. Redundancy analysis showed that the three transplanted indigenous species differed in their responses to light conditions according to their tolerance to shade, and also differed in their responses to soil physical and chemical properties. Based on seedling seasonal growth patterns and morphological responses, we suggest that forest managers attempting to introduce seedlings of indigenous tree species should artificially supply water to increase seedling growth in the dry season. Also, the introduced tree species should be selected depending on the nature of the plantation; for example, C. chinensis and M. chapensis seedlings can be transplanted into mixed-legume plantations. Additionally, fertilizer with potassium and nitrogen should be used to improve seedling performance.  相似文献   

4.
The boreal forest is expected to experience the greatest warming of all forest biomes. The extent of the boreal forest, the large amount of carbon contained in the soil, and the expected climate warming, make the boreal forest a key biome to understand and represent correctly in global carbon models. It has been suggested that an increase in temperature could stimulate the release of CO2 caused by an increased decomposition rate, more than biomass production, which could convert current carbon sinks into carbon sources. Most boreal forests are currently carbon sinks, but it is unclear for how long in the future the carbon sink capacity of the boreal forest is likely to be maintained. The impact of soil warming on stem volume growth was studied during 6 years, in irrigated (I) and irrigated‐fertilized (IL) stands of 40‐year‐old Norway spruce in Northern Sweden. From May to October heating cables were used to maintain the soil temperature on heated‐irrigated plots (Ih and ILh) 5 °C above that on unheated control plots (Ic and ILc). After six seasons' warming, stem volume production (m3 ha?1 a?1) was 115% higher on Ih than on unheated (Ic) plots, and on heated and irrigated‐fertilized plots (ILh) it was 57% higher than on unheated plots (ILc). The results indicate that in a future warmer climate, an increased availability of nitrogen, combined with a longer growing season, may increase biomass production substantially, on both low‐ and high‐fertility sites. It is, however, too early to decide whether the observed responses are transitory or long lasting. It is therefore crucial to gain a better understanding of the responses of boreal forest ecosystems to climate change, and to provide data to test and validate models used in predicting the impact of climate change.  相似文献   

5.
《Acta Oecologica》2000,21(2):139-147
The knowledge on plant species' morphological plasticity has mostly been gained in laboratory and greenhouse studies, and has hardly ever been verified in the field, where the interactive effects of light and nutrient availability operate in combination with biotic interactions. We studied morphological plasticity of shoot in three herbaceous species with different growth-forms and requirements – Hepatica nobilis, Lathyrus vernus, Sesleria caerulea – in a field experiment, established in an annually mown species-rich grassland. Above- and below-ground resource availability was manipulated by fertilization and additional illumination (using mirrors) in a two-factorial randomized design. The main hypothesis was that fertilization of the presumably non-light-limited grassland community would cause light deficit in the canopy, indicated by adaptive plastic responses in shade tolerant species and inevitable plastic responses in light-demanding species. Plants did not respond to additional illumination in non-fertilized plots, showing that the growth of the studied species in this grassland canopy is rather nutrient than light limited. The three species showed strikingly different patterns of response to manipulation of light availability in fertilized treatment. There, the shade-tolerant Hepatica showed an adaptive plasticity by adjusting its morphology to shadier conditions (e.g. by producing shorter petioles). The light-demanding Sesleria could not make use of the extra nutrients without the additional light resource (its growth being light limited in fertilized plots) and produced more shoot biomass and leaf area only with below-ground as well as above-ground resource addition (inevitable plastic response). In Lathyrus, only the main effects of fertilization and illumination were significant.  相似文献   

6.
Plant traits are known to control litter decomposition rates through afterlife effects on litter quality. Land-use practices that modify plant traits, e.g. livestock grazing and soil fertilization, also have cascading effects on litter decomposition. However, almost all studies of these afterlife effects ignored the role of soil detritivores in the decomposition processes. We explored how the feeding activities of a macroarthropod modify microbial activity in leaf litter. Dead leaves from two grassland species, Bromopsis erecta and Potentilla verna, were collected in fertilized or unfertilized grazed plots and fertilized or unfertilized ungrazed plots. We determined how intraspecific variation in litter quality in response to sheep grazing and soil fertilization (i) influences the consumption and assimilation of leaf litter by the millipede Glomeris marginata, and (ii) affects the activity of microbial decomposers, assessed by substrate-induced respiration (SIR), in leaf litter before consumption and in faecal pellets and litter remains processed by Glomeris under all treatments. In the absence of millipedes, microbial activity was significantly higher in leaf litter from fertilized plots. Glomeris consumed larger amounts of leaf litter from fertilized grazed plots, owing to increased consumption of the otherwise poorly palatable Bromopsis, and produced larger amounts of faecal pellets when fed on this food. However, irrespective of the food consumed, SIR in faecal pellets was found to be similar in all treatments. Moreover, SIR in litter remains unconsumed at the end of the experiment was reduced to low and similar levels in all treatments. Overall, homogenization of microbial activity by Glomeris suppressed differences in SIR between leaf litter from fertilized and unfertilized plots, in both Bromopsis and Potentilla. Our results suggest that studies that assess afterlife effects of plant traits on decomposition using methods that exclude soil macrofauna may prove inadequate in ecosystems with abundant populations of detritivores.  相似文献   

7.

Background and Aims

Functional traits are indicators of plant interactions with their environment and the resource-use strategies of species can be defined through some key functional traits. The importance of genetic variability and phenotypic plasticity in trait variations in response to a common environmental change was investigated in two subalpine species.

Methods

Two species with contrasted resource-use strategies, Dactylis glomerata and Festuca paniculata, were grown along a productivity gradient in a greenhouse experiment. Functional traits of different genotypes were measured to estimate the relative roles of phenotypic plasticity and genetic variability, and to compare their levels of phenotypic plasticity.

Key Results

Trait variability in the field for the two species is more likely to be the result of phenotypic plasticity rather than of genetic differentiation between populations. The exploitative species D. glomerata expressed an overall higher level of phenotypic plasticity compared with the conservative species F. paniculata. In addition to different amplitudes of phenotypic plasticity, the two species differed in their pattern of response for three functional traits relevant to resource use (specific leaf area, leaf dry matter content and leaf nitrogen content).

Conclusions

Functional trait variability was mainly the result of phenotypic plasticity, with the exploitative species showing greater variability. In addition to average trait values, two species with different resource-use strategies differed in their plastic responses to productivity.  相似文献   

8.
The boreal forest is expected to experience the greatest warming of all forest biomes, raising concerns that some of the large quantities of soil carbon in these systems may be added to the atmosphere as CO2. However, nitrogen deposition or fertilization has the potential to increase boreal forest production and retard the decomposition of soil organic matter, hence increasing both tree stand and soil C storage. The major contributors to soil‐surface CO2 effluxes are autotrophic and heterotrophic respiration. To evaluate the effect of nutrient additions on the relative contributions from autotrophic and heterotrophic respiration, a large‐scale girdling experiment was performed in a long‐term nutrient optimization experiment in a 40‐year‐old stand of Norway spruce in northern Sweden. Trees on three nonfertilized plots and three fertilized plots were girdled in early summer 2002, and three nonfertilized and three fertilized plots were used as control plots. Each plot was 0.1 ha and contained around 230 trees. Soil‐surface CO2 fluxes, soil moisture, and soil temperature were monitored in both girdled and nongirdled plots. In late July, the time of the seasonal maximum in soil‐surface CO2 efflux, the total soil‐CO2 efflux in nongirdled plots was 40% lower in the fertilized than in the nonfertilized plots, while the efflux in girdled fertilized and nonfertilized plots was 50% and 60% lower, respectively, than in the corresponding nongirdled controls. We attribute these reductions to losses of the autotrophic component of the total soil‐surface CO2 efflux. The estimates of autotrophic respiration are conservative as root starch reserves were depleted more rapidly in roots of girdled than in nongirdled trees. Thus, heterotrophic activity was overestimated. Calculated on a unit area basis, both the heterotrophic and autotrophic soil respiration was significantly lower in fertilized plots, which is especially noteworthy given that aboveground production was around three times higher in fertilized than in nonfertilized plots.  相似文献   

9.
Background and AimsKnowledge of plant resource acquisition strategies is crucial for understanding the mechanisms mediating the responses of ecosystems to external nitrogen (N) input. However, few studies have considered the joint effects of above-ground (light) and below-ground (nutrient) resource acquisition strategies in regulating plant species responses to N enrichment. Here, we quantified the effects of light and non-N nutrient acquisition capacities on species relative abundance in the case of extra N input.MethodsBased on an N-manipulation experiment in a Tibetan alpine steppe, we determined the responses of species relative abundances and light and nutrient acquisition capacities to N enrichment for two species with different resource acquisition strategies (the taller Stipa purpurea, which is colonized by arbuscular mycorrhizal fungi, and the shorter Carex stenophylloides, which has cluster roots). Structural equation models were developed to explore the relative effects of light and nutrient acquisition on species relative abundance along the N addition gradient.Key ResultsWe found that the relative abundance of taller S. purpurea increased with the improved light acquisition along the N addition gradient. In contrast, the shorter C. stenophylloides, with cluster roots, excelled in acquiring phosphorus (P) so as to elevate its leaf P concentration under N enrichment by producing large amounts of carboxylate exudates that mobilized moderately labile and recalcitrant soil P forms. The increased leaf P concentration of C. stenophylloides enhanced its light use efficiency and promoted its relative abundance even in the shade of taller competitors.ConclusionsOur findings highlight that the combined effects of above-ground (light) and below-ground (nutrient) resources rather than light alone (the prevailing perspective) determine the responses of grassland community structure to N enrichment.  相似文献   

10.
Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i   总被引:8,自引:0,他引:8  
Allison SD  Vitousek PM 《Oecologia》2004,141(4):612-619
Physiological traits that contribute to the establishment and spread of invasive plant species could also have impacts on ecosystem processes. The traits prevalent in many invasive plants, such as high specific leaf areas, rapid growth rates, and elevated leaf nutrient concentrations, improve litter quality and should increase rates of decomposition and nutrient cycling. To test for these ecosystem impacts, we measured initial leaf litter properties, decomposition rates, and nutrient dynamics in 11 understory plants from the Hawaiian islands in control and nitrogen + phosphorus fertilized plots. These included five common native species, four of which were ferns, and six aggressive invasive species, including five angiosperms and one fern. We found a 50-fold variation in leaf litter decay rates, with natives decaying at rates of 0.2–2.3 year–1 and invaders at 1.4–9.3 year–1. This difference was driven by very low decomposition rates in native fern litter. Fertilization significantly increased the decay rates of leaf litter from two native and two invasive species. Most invasive litter types lost nitrogen and phosphorus more rapidly and in larger quantities than comparable native litter types. All litter types except three native ferns lost nitrogen after 100 days of decomposition, and all litter types except the most recalcitrant native ferns lost >50% of initial phosphorus by the end of the experiment (204–735 days). If invasive understory plants displace native species, nutrient cycling rates could increase dramatically due to rapid decomposition and nutrient release from invasive litter. Such changes are likely to cause a positive feedback to invasion in Hawaii because many invasive plants thrive on nutrient-rich soils.  相似文献   

11.
Species in high-rainfall regions have two major alternative approaches to quickly drain off water, i.e., increasing leaf inclination angles relative to the horizontal plane, or developing long leaf drip tips. We hypothesized that shade-adapted species will have more pronounced leaf drip tips but not greater inclination angles (which can reduce the ability to intercept light) compared to sun-adapted species and that length of leaf drip tips will be negatively correlated with photosynthetic capacity [characterized by light-saturated net photosynthetic rates (A max), associated light compensation points (LCP), and light saturation points (LSP)]. We tested this hypothesis by measuring morphological and physiological traits that are associated with light-interception and water shedding for seven shade-adapted shrub species, ten sun-adapted understory shrub species, and 15 sun-adapted tree species in a subtropical Chinese rainforest, where mean annual precipitation is around 1,600 mm. Shade-adapted understory species had lower LMA, A max, LSP, and LCP compared to understory or canopy sun-adapted species; their leaf and twig inclination angles were significantly smaller and leaf drip tips were significantly longer than those in sun-adapted species. This suggests that shade-adapted understory species tend to develop pronounced leaf drip tips but not large leaf inclination angles to shed water. The length of leaf drip tips was negatively correlated with leaf inclination angles and photosynthetic capacity. These relationships were consistent between ordinary regression and phylogenetic generalized least squares analyses. Our study illustrates the trade-offs between light interception and leaf water shedding and indicates that length of leaf drip tips can be used as an indicator of adaptation to shady conditions and overall photosynthetic performance of shrub species in subtropical rainforests.  相似文献   

12.
伏牛山自然保护区森林冠层结构对林下植被特征的影响   总被引:4,自引:0,他引:4  
卢训令  丁圣彦  游莉  张恒月 《生态学报》2013,33(15):4715-4723
在伏牛山自然保护区典型地段设立样方,测定了森林生态系统内几种典型群落类型的冠层结构、光环境特征,调查了林下植被的特征,分析了它们之间的相互关系.结果显示:各群落的冠层结构和光环境有一定的差异,单因素方差分析表明,部分群落间的差异性达到显著水平;各群落灌木层物种丰富度、多样性和均匀度均高于草本层,而优势度正相反;线性拟合的结果表明,草本层的物种丰富度、多样性与冠下光合量子通量密度间呈极显著负相关,优势度与冠下光合量子通量密度间呈显著正相关,灌木层各参数与冠层结构特征间相关性不显著.研究表明,冠层结构的变化对草本层(包括更新幼苗)的影响显著高于灌木层.林隙/林窗或林中空地的出现可能对草本物种或其他阳性及先锋物种具有促进作用,而对优势种幼苗的萌发和定植产生负效应.推测在典型的落叶阔叶林生态系统演替进程中,林下光照强度可能不是最主要的限制因素,优势种种子的扩散、萌发和定植限制可能更重要.  相似文献   

13.
Australian species of the genus Acacia are amongst the most invasive trees. As nitrogen fixers, they are able to invade oligotrophic ecosystems and alter ecosystem functioning to their benefit. We aimed to answer three questions: How does early Acacia invasion influence nitrogen and light in a sandy savanna? How does early Acacia invasion impact biodiversity? Does early invasion alter ecosystem functioning towards the dominance of Acacia? We analyzed (using generalized linear mixed models and richness estimators) paired plots focused on plants of Acacia mangium (Fabaceae) and plants of Marcetia taxifolia (Melastomataceae) by taking hemispherical photos and sampling plants, leaves and soil for measurements of light, richness, leaf nitrogen, leaf δ15N, soil nitrogen and soil coarse sand. The results suggest that early Acacia invasion alters the control of soil and of leaf nitrogen and increases shading, enabling a much wider range of light variation. The δ15N results suggest that the nitrogen taken up by Acacia is transferred to neighboring plants and influences the light environment, suggesting facilitation. The enrichment of plant species observed during early Acacia invasion is consistent with the wider range of light variation, but the forecasted leaf nitrogen conditions during the established phase of Acacia invasion might cause loss of light-demanding species because of increased shading. If early Acacia invasion turns into an established phase with highly increased shading, Acacia seedlings might be favored and ecosystem functioning might change towards its dominance.  相似文献   

14.
Abstract.
  • 1 The densities of insect herbivores in fertilized and unfertilized field plots of goldenrods, Solidago altissima (Compositae), were monitored over a period of 4 years.
  • 2 A total of seventeen insect taxa occurred on the plots over the course of the study, including sap feeders, leaf chewers, leaf miners, leaf gallers and stem gallers with multiple representatives in each of these feeding guilds.
  • 3 Nine of the seventeen taxa significantly increased in density on fertilized plots in at least one year of the study, two taxa showed marginally significant increases on fertilized plots, two significantly decreased in density on fertilized plots in at least one year, and the remaining taxa were unaffected by the fertilizer treatment.
  • 4 The effects of fertilization on the insects were not strongly related to feeding guild; the group of insects that increased on fertilized plots was functionally diverse, and for the most part members of the same guild did not respond to the fertilizer treatment in consistent ways.
  • 5 Differences between fertilized and unfertilized plots were greatest in the fourth year. The insects that showed delayed responses to fertilizer treatment may have been affected by changes in microclimate that developed slowly over the course of the study, suggesting that long-term studies may be necessary to detect effects of host plant stress on insect herbivores.
  相似文献   

15.
1. Availabilities of light and soil nitrogen for understory plants vary by extent of canopy gap formation through typhoon disturbance. We predicted that variation in resource availability and herbivore abundance in canopy gaps would affect herbivory through variation in leaf traits among plant species. We studied six understory species that expand their leaves before or after canopy closure in deciduous forests. We measured the availabilities of light, soil nitrogen, soil water content, and herbivore abundance in 20 canopy gaps (28.3–607.6 m2) formed by a typhoon and in four undisturbed stands. We also measured leaf traits and herbivory on understory plants. 2. The availabilities of light and soil nitrogen increased with increasing gap size. However, soil water content did not. The abundance of herbivorous insects (such as Lepidoptera and Orthoptera) increased with increasing gap size. 3. Concentrations of condensed tannins, total phenolics, and nitrogen in leaves and the leaf mass per area increased in late leaf expansion species with increasing gap size, whereas none of the leaf traits varied by gap size in early leaf expansion species. 4. Herbivory increased on early leaf expansion species with increasing gap size, but decreased on late leaf expansion species. In these late leaf expansion species, total phenolics and C : N ratio had negative relationships with herbivory. 5. These results suggested that after typhoon disturbance, increased herbivory on early leaf expansion species can be explained by increased herbivore abundance, whereas decreased herbivory on late leaf expansion species can be explained by variation in leaf traits.  相似文献   

16.

Key message

Reduced leaf longevity, N-fixation, and enhanced hydraulic capacity combined support greater shifts in seasonal photosynthetic capacity of an expansive understory evergreen woody species relative to co-occurring less expansive evergreen species.

Abstract

Physiological functioning typically declines with increased leaf life span. While an evergreen leaf habit is generally associated with reduced leaf N, physiological capacity, and slower growth, most expansive woody species are evergreens and/or N fixers. An evergreen leaf habit enables year-round activity and less investment in carbon and nutrients, while N-fixation enhances photosynthetic capacity. Our objective was to compare anatomy and physiology of three woody evergreens Ilex opaca Aiton (Aquifoliaceae), Kalmia latifolia L. (Ericaceae), and Myrica cerifera (Myricaceae) of varying leaf longevity, N-fixation capability, and known expansive potential in a deciduous forest understory to determine if seasonal physiological performance integrated these factors. We hypothesized that I. opaca (non-expansive) and K. latifolia (moderately expansive), which have longer leaf longevities, would have reduced physiological performance compared to M. cerifera (expansive), which has shorter leaf longevity, and symbiotically fixes atmospheric N. Stomatal conductance to water vapor, photosynthetic and hydraulic capacities, specific leaf area, and leaf %N decreased with increasing leaf life span; however, trends among species were not consistent seasonally. While hydraulic capacity remained constant throughout the year, photosynthetic capacity did not. During the growing season, M. cerifera displayed photosynthetic capacity similar to deciduous species, yet, during the winter, photosynthetic capacity was similar to the slower-growing evergreens. Reduced leaf life span, enhanced hydraulic capacity, and nitrogen fixation support the seasonal shift in photosynthetic capacity observed in M. cerifera. This “hybrid” strategy enables M. cerifera to maximize productivity during months of optimal conditions, thereby promoting rapid growth and expansion in the understory.  相似文献   

17.
Background: Boreal forest understory plant communities are known to be resilient to fire – the species composition of stands after a fire is quite similar to the pre-fire composition. However, we know little about recovery of individual plants within particular locations in forest stands (i.e. plot-level changes) since we usually do not have pre-fire data for plots.

Aims: We wanted to determine whether species recruited into the same or different locations in a Pinus banksiana stand that experienced a severe wildfire.

Methods: We used pre-existing permanent plots to evaluate the cover of understory after an unplanned wildfire.

Results: Across the entire stand nine of 47 species showed a significant change in cover. The largest change in a plant functional group was in the mosses, with all species present before fire being eliminated. There was no change in species diversity or total cover. At the plot level, species composition showed a much greater change. An average of 47% of the species present in a plot before the fire were absent in the same plot after the fire, and the total species turnover in plots was 88% of the species present before the fire. The plots showed a similar shift in species composition.

Conclusions: These results confirm that boreal forest communities show a high degree of resilience to fire, but within a forest stand species will be found in different locations following fire, potentially exposing them to a different set of biotic and abiotic conditions in these new locations.  相似文献   

18.
Phenological and physiological responses of plants to climate change are key issues to understand the global change impact on ecosystems. To evaluate the species-specific responses, a soil-warming experiment was conducted for seven understory species having various leaf habits in a deciduous forest, northern Japan; one evergreen shrub, one semi-evergreen fern, one summer-deciduous shrub, and four summer-green herbs. Soil temperature in the warming plots was electrically maintained 5 °C higher than control plots. Responses of leafing phenology highly varied among species: new leaf emergence of the evergreen shrub was delayed; senescence of overwintering leaves of the semi-evergreen fern was accelerated resulting in the shift to deciduousness; leaf shedding of the summer-deciduous shrub was accelerated. Among four summer-green species, only an earliest leaf-out species advanced growth initiation, but the period of growth season was not changed. Physiological responses to soil warming were also highly species-specific: the warming treatment increased the photosynthetic activity of the summer-deciduous shrub and one summer-green species, decreased that of the semi-evergreen fern, while other species did not show any changes in photosynthetic traits. Totally, the soil warming impacts on understory plants was apparent in spring. It was suggested that modification of snow conditions is important issue especially for plants with overwintering leaves. Responses of understory vegetation to climate change may highly vary depending on the composition of leaf habits in the cool-temperate forests.  相似文献   

19.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

20.
《Acta Oecologica》2003,24(2):65-75
We examine the relationship between plant diversity and ecosystem properties in a Mediterranean grassland. Five legumes, three grasses and two forb species are grown in monocultures and compared with mixtures that include these ten species. Trifolium angustifolium L. (a legume), Lolium rigidum Gaudin (a grass), and Centaurea solstitialis L. (a forb), are replicated in monocultures. Plant cover, root length and biomass, and concentrations of soil nitrate and ammonium are measured in all plots in March and May. Aboveground biomass is measured at a final harvest in late May to early June. Root biomass is significantly higher in the species mixtures than the average of the monocultures. Plant cover and root length are marginally significantly higher (0.05 < P ≤ 0.1) in the mixtures compared to the average of the monocultures. Soil inorganic nitrogen concentrations and aboveground biomass do not significantly differ between the average of the monocultures and the mixtures. Aboveground biomass in T. angustifolium monocultures is significantly higher than in the mixtures, and on average the legume monocultures do not differ significantly from the mixtures. Root length and biomass in L. rigidum monocultures are higher than in the mixtures in March. Nitrate concentrations (which are negatively correlated with root length and biomass) are the lowest in C. solstitialis in May. Thus, we have evidence that some of the measures of ecosystem performance decline in the average of the monocultures when compared with the mixtures, but mixtures never outperform or do more poorly than the best performing monocultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号