首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The inflammatory cytokine IL-1β is critical for host responses against many human pathogens. Here, we define Group B Streptococcus (GBS)-mediated activation of the Nod-like receptor-P3 (NLRP3) inflammasome in macrophages. NLRP3 activation requires GBS expression of the cytolytic toxin, β-hemolysin, lysosomal acidification, and leakage. These processes allow the interaction of GBS RNA with cytosolic NLRP3. The present study supports a model in which GBS RNA, along with lysosomal components including cathepsins, leaks out of lysosomes and interacts with NLRP3 to induce IL-1β production.  相似文献   

2.

Background

β-glucans are fungal cell wall components that bind to the C-type lectin-like receptor dectin-1. Polymorphisms of dectin-1 gene are associated with susceptibility to invasive fungal infection and medically refractory ulcerative colitis. The purpose of this study has been addressing the response of human macrophages to β-glucans under different conditions mimicking the composition of the inflammatory milieu in view of the wide plasticity and large range of phenotypical changes showed by these cells, and the relevant role of dectin-1 in several pathophysiological conditions.

Principal Findings

Serum-differentiated macrophages stimulated with β-glucans showed a low production of TNFα and IL-1β, a high production of IL-6 and IL-23, and a delayed induction of cyclooxygenase-2 and PGE2 biosynthesis that resembled the responses elicited by crystals and those produced when phagosomal degradation of the phagocytic cargo increases ligand access to intracellular pattern recognition receptors. Priming with a low concentration of LPS produced a rapid induction of cyclooxygenase-2 and a synergistic release of PGE2. When the differentiation of the macrophages was carried out in the presence of M-CSF, an increased expression of dectin-1 B isoform was observed. In addition, this treatment made the cells capable to release arachidonic acid in response to β-glucan.

Conclusions

These results indicate that the macrophage response to fungal β-glucans is strongly influenced by cytokines and microbial-derived factors that are usual components of the inflammatory milieu. These responses can be sorted into three main patterns i) an elementary response dependent on phagosomal processing of pathogen-associated molecular patterns and/or receptor-independent, direct membrane binding linked to the immunoreceptor tyrosine-based activation motif-bearing transmembrane adaptor DNAX-activating protein 12, ii) a response primed by TLR4-dependent signals, and iii) a response dependent on M-CSF and dectin-1 B isoform expression that mainly signals through the dectin-1 B/spleen tyrosine kinase/cytosolic phospholipase A2 route.  相似文献   

3.
4.
β-lapachone (β-lap), an NAD(P)H:quinone oxidoreductase 1 (NQO1) targeting antitumor drug candidate in phase II clinical trials, is metabolically eliminated via NQO1 mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation. This study intends to explore the inner link between the cellular glucuronidation and pharmacokinetics of β-lap and its apoptotic effect in human colon cancer cells. HT29 cells S9 fractions exhibited high glucuronidation activity towards β-lap, which can be inhibited by UGT1A9 competitive inhibitor propofol. UGT1A siRNA treated HT29 cells S9 fractions displayed an apparent low glucuronidation activity. Intracellular accumulation of β-lap in HCT116 cells was much higher than that in HT29 cells, correlated with the absence of UGT1A in HCT116 cells. The cytotoxic and apoptotic effect of β-lap in HT29 cells were much lower than that in HCT116 cells; moreover, β-lap triggered activation of SIRT1-FOXO1 apoptotic pathway was observed in HCT116 cells but not in HT29 cells. Pretreatment of HT29 cells with UGT1A siRNA or propofol significantly decreased β-lap’s cytotoxic and apoptotic effects, due to the repression of glucuronidation and the resultant intracellular accumulation. In conclusion, UGT1A is an important determinant, via switching NQO1-triggered redox cycle to metabolic elimination, in the intracellular accumulation of β-lap and thereafter its cytotoxicity in human colon cancer cells. Together with our previous works, we propose that UGTs determined cellular pharmacokinetics is an important determinant in the apoptotic effects of NQO1 targeting substrates serving as chemotherapeutic drugs.  相似文献   

5.
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.  相似文献   

6.
Antonie van Leeuwenhoek - Screening for producers of potent antimicrobial peptides, resulted in the isolation of Bacillus cereus BGNM1 with strong antimicrobial activity against Listeria...  相似文献   

7.
Previously, we have found that activation of deoxycytidine kinase elicited by various DNA-damaging chemical agents could be prevented by BAPTA-AM, a cell-permeable calcium chelator or by pifithrin-α, a pharmacological inhibitor of p53. Here, we show that stimulation of deoxycytidine kinase by UV-light also is calcium-dependent and pifithrin-α-sensitive in tonsillar lymphocytes, while thymidine kinase 1 activity is stabilised in the presence of BAPTA-AM. Importantly, both UV-irradiation and calcium chelation decreased the incorporation of labelled deoxycytidine and thymidine into DNA. Pifithrin-alpha dramatically reduced the labelling of both the nucleotide and DNA fractions, possibly due to inhibition of transmembrane nucleoside transport.  相似文献   

8.
9.
Summary The -galactosidase gene ofStreptococcus thermophilus was cloned into plasmid vector, pVT100-U, and used to transform a strain ofEscherichia coli andSaccharomyces cerevisiae. Transformants which expressed -galactosidase activity were obtained in bothE. coli andSaccharomyces cerevisiae, the highest activity found in a yeast recombinant. The expression and thermostability of the cloned -galactosidase genes from different plasmid constructions were compared with the streptococcal -galactosidase. The recombinant protein was equivalent to the specific activity and thermostability ofS. thermophilus.  相似文献   

10.
11.
Results of this investigation demonstrate that exposure to 17 -estradiol differentially and significantly regulates cortical nerve cell outgrowth depending on the cortical region. Parietal and occipital neurons treated with 1 nM 17 -estradiol showed a greater magnitude of neuronal outgrowth whereas outgrowth of temporal cortex neurons was decreased in the presence of 1 nM 17 -estradiol. Frontal cortex neurons showed a consistent enhancement of neuronal outgrowth that did not reach statistical significance. The dose response profile for 17 -estradiol regulation of the macromorphological features exhibited a bimodal dose response relationship whereas the dose response profile for 17 -estradiol regulation of the micromorphological features exhibited a dose response more characteristic of an inverted V-shaped function. An antagonist to the NMDA receptor antagonist, AP5, abolished the growth promoting effect of 17 -estradiol whereas the nuclear estrogen receptor antagonist ICI 182,780 did not. Lastly, neocortical neurons exposed to 17 -estradiol exhibited greater viability and survival than control neurons over a two week period. These data indicate that 17 -estradiol can enhance the growth and viability of select populations of neocortical neurons and that the growth promoting effects of 17 -estradiol can be blocked by an antagonist to the NMDA glutamate receptor and not by an antagonist to the estrogen nuclear receptor.  相似文献   

12.
Two distinct forms of β-glucosidase, A and B, were found to occur in the cells of Pseudomonas fluorescens var. cellulosa : A was membrane-bound, while B cytosolic. They differed also from each other in some properties, such as molecular size, kinetic parameters, and susceptibility to various compounds. β-Glucosidase B was partially purified and studied especially of its substrate specificity. The results indicated that it may be an atypical β-glucosidase which possesses a certain character of exo-cellulase.  相似文献   

13.
Zhi P  Chia PZ  Chia C  Gleeson PA 《IUBMB life》2011,63(9):721-729
The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD.  相似文献   

14.
Human β-endorphin produced a potent antinociceptive response as estimated by the tail-flick test in rats after intraventricular injection. On a molar basis, the peptide was 21 times more potent than morphine and in addition, the peptide produced morphine-like catatonia and hypothermia. These responses were blocked by naloxone. Repeated injections of the peptide induced tolerance to analgesic response, catatonia and hypothermia. Cross tolerance to morphine was also observed.  相似文献   

15.
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony-stimulating factor (GM-CSF), exhibit overlapping activities in the regulation of hematopoietic cells. In humans, the common β (βc) receptor is shared by the three cytokines and functions together with cytokine-specific α subunits in signaling. A widely accepted hypothesis is that receptor activation requires heterodisulfide formation between the domain 1 D-E loop disulfide in human βc (hβc) and unidentified cysteine residues in the N-terminal domains of the α receptors. Since the development of this hypothesis, new data have been obtained showing that domain 1 of hβc is part of the cytokine binding epitope of this receptor and that an IL-3Rα isoform lacking the N-terminal Ig-like domain (the “SP2” isoform) is competent for signaling. We therefore investigated whether distortion of the domain 1-domain 4 ligand-binding epitope in hβc and the related mouse receptor, βIL-3, could account for the loss of receptor signaling when the domain 1 D-E loop disulfide is disrupted. Indeed, mutation of the disulfide in hβc led to both a complete loss of high affinity binding with the human IL-3Rα SP2 isoform and of downstream signaling. Mutation of the orthologous residues in the mouse IL-3-specific receptor, βIL-3, not only precluded direct binding of mouse IL-3 but also resulted in complete loss of high affinity binding and signaling with the mouse IL-3Rα SP2 isoform. Our data are most consistent with a role for the domain 1 D-E loop disulfide of hβc and βIL-3 in maintaining the precise positions of ligand-binding residues necessary for normal high affinity binding and signaling.  相似文献   

16.
Purification and characterization of β2-microglobulin from human urine was performed. The yield was 30.1%, and 150.4 mg of β2-microglobulin was obtained. The final preparation of β2-microglobulin obtained showed three bands on disc gel electrophoresis at pH 9.5, and all of them have immunological activity. However, these three bands migrated as a single band on disc gel electrophoresis at pH 4.3. It is concluded that the three bands observed on disc gel electrophoresis at pH 9.5 were charge isomers. The isoelectric points of isomers were determined by isotachophoresis and two of them were 5.4 and 5.9 respectively, while the other one was not determined.  相似文献   

17.
The human gut microbiota encodes β-glucuronidases (GUSs) that play key roles in health and disease via the metabolism of glucuronate-containing carbohydrates and drugs. Hundreds of putative bacterial GUS enzymes have been identified by metagenomic analysis of the human gut microbiome, but less than 10% have characterized structures and functions. Here we describe a set of unique gut microbial GUS enzymes that bind flavin mononucleotide (FMN). First, we show using mass spectrometry, isothermal titration calorimetry, and x-ray crystallography that a purified GUS from the gut commensal microbe Faecalibacterium prausnitzii binds to FMN on a surface groove located 30 Å away from the active site. Second, utilizing structural and functional data from this FMN-binding GUS, we analyzed the 279 unique GUS sequences from the Human Microbiome Project database and identified 14 putative FMN-binding GUSs. We characterized four of these hits and solved the structure of two, the GUSs from Ruminococcus gnavus and Roseburia hominis, which confirmed that these are FMN binders. Third, binding and kinetic analysis of the FMN-binding site mutants of these five GUSs show that they utilize a conserved site to bind FMN that is not essential for GUS activity, but can affect KM. Lastly, a comprehensive structural review of the PDB reveals that the FMN-binding site employed by these enzymes is unlike any structurally characterized FMN binders to date. These findings reveal the first instance of an FMN-binding glycoside hydrolase and suggest a potential link between FMN and carbohydrate metabolism in the human gut microbiota.  相似文献   

18.

Objective

To investigate the potential involvements of E-cadherin and β-catenin in meningioma.

Methods

Immunohistochemistry staining was performed on samples from patients with meningioma. The results were graded according to the positive ratio and intensity of tissue immunoreactivity. The expression of E-cadherin and β-catenin in meningioma was analyzed by its relationship with WHO2007 grading, invasion, peritumoral edema and postoperative recurrence.

Results

The positive rates of E-cadherin in meningioma WHO I, II, III were 92.69%, 33.33% and 0, respectively, (P<0.05); while the positive rates of β-catenin in meningioma WHO I, II, III were 82.93%, 33.33% and 20.00%, respectively, (P<0.05). The positive rate of E-cadherin in meningioma without invasion (94.12%) was higher than that with invasion (46.67%) (P<0.05). The difference in the positive rate of β-catenin between meningioma without invasion (88.24%) and meningioma with invasion (33.33%, P<0.05) was also statically significant. The positive rates of E-cadherin in meningioma with peritumoral edema 0, 1, 2, 3 were 93.75%, 85.71%, 60.00% and 0 respectively, (P<0.05); the positive rates of β-catenin in meningioma with peritumoral edema 0, 1, 2, 3 were 87.50%, 85.71%, 30.00% and 0 respectively, (P<0.01). The positive rates of E- cadherin in meningioma with postoperative recurrence were 33.33%, and the positive rate with postoperative non-recurrence was 90.00% (P<0.01). The positive rates of β-catenin in meningioma with postoperative recurrence and non-recurrence were 11.11%, 85.00%, respectively (P<0.01).

Conclusion

The expression levels of E- cadherin and β-catenin correlated closely to the WHO 2007 grading criteria for meningioma. In atypical or malignant meningioma, the expression levels of E-cadherin and β-catenin were significantly lower. The expression levels of E- cadherin and β-catenin were also closely correlated with the invasion status of meningioma, the size of the peritumoral edema and the recurrent probabilities of the meningioma, all in an inverse correlationship. Taken together, the present study provided novel molecular targets in clinical treatments to meningioma.  相似文献   

19.
《Autophagy》2013,9(2):280-282
Pancreatic β-cells play a key role in glucose homeostasis in mammals. Although large-scale protein synthesis and degradation occur in pancreatic β-cells, the mechanism underlying dynamic protein turnover in β-cells remains largely unknown. We found low-level constitutive autophagy in β-cells of C57BL/6 mice fed a standard diet; however, autophagy was markedly upregulated in mice fed a high-fat diet. β-cells of diabetic db/db mice contained large numbers of autophagosomes, compared with non-diabetic db/misty controls. The functional importance of autophagy was analyzed using β-cell-specific Atg7 knockout mice. Autophagy-deficient mice showed degeneration of β-cells and impaired glucose tolerance with reduced insulin secretion. While a high-fat diet stimulated β-cell autophagy in control mice, it induced a profound deterioration of glucose intolerance in β-cell autophagy-deficient mutants, partly because of the lack of a compensatory increase in β-cell mass. These results suggest that the degradation of unnecessary cellular components by autophagy is essential for maintenance of the architecture and function of β-cells. Autophagy also serves as a crucial element of stress responses to protect β-cells under insulin resistant states. Impairment of autophagic machinery could thus predispose individuals to type 2 diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号