首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
International Journal of Peptide Research and Therapeutics - In this study, the effect of two peptides, namely HL-7 and HL-10, on the percentage of cell death in L6 myoblast, proliferation, and...  相似文献   

2.
目的:探讨L-亮氨酸对克隆的胰岛β细胞株INS-1E细胞分泌胰岛素的刺激作用及其葡萄糖依赖性。方法:INS-1E细胞经传代培养2 d后,在Krebs-Ringer缓冲液中37℃培养箱预培养30 min,再用含有不同浓度葡萄糖和不同浓度L-亮氨酸的改良Krebs-Ringer缓冲液培养60 min,然后留取上清液进行胰岛素测定。结果:L-亮氨酸在0.1~10 mmol.L-1范围不增加16.7mmol.L-1葡萄糖刺激的INS-1E细胞的胰岛素分泌,仅20 mmol.L-1的L-亮氨酸促进葡萄糖诱导的胰岛素分泌;10 mmol.L-1L-亮氨酸在1.1、3.3、6.7 mmol.L-1葡萄糖存在的情况下促进INS-1E细胞的胰岛素分泌,而在11.1、16.7、25 mmol.L-1葡萄糖存在的情况下无促进胰岛素分泌的作用。结论:本研究显示在无刺激胰岛素分泌的葡萄糖浓度条件下,10 mmol.L-1L-亮氨酸即显示了刺激INS-1E细胞分泌胰岛素的作用,在较高葡萄糖的条件下,10 mmol.L-1L-亮氨酸的作用减弱或消失。  相似文献   

3.
目的:建立胰岛细胞系INS-1E细胞的葡萄糖毒性模型。方法:将INS-1E细胞分别在不同葡萄糖浓度(5.5 mmol/L、16.7mmol/L、25 mmol/L、30 mmol/L)的1640完全培养基中培养不同时间(48 h、72 h、96 h、120 h),分别在不同时间点取细胞进行细胞功能检测,实时荧光定量PCR法检测胰岛素m RNA的表达,ELISA检测葡萄糖刺激的胰岛素的分泌。结果:与对照组相比,高糖浓度(5.5 mmol/L、16.7 mmol/L、25 mmol/L、30 mmol/L)培养基中培养48 h后,INS-1E细胞的胰岛素合成和分泌的功能均增加(P均0.05),随着培养基中葡萄糖浓度的升高以及培养时间的延长,INS-1E细胞胰岛素合成及分泌的功能逐渐下降,当在葡萄糖浓度为30 mmol/L的培养基中培养120 h后,胰岛素m RNA合成及葡萄糖刺激的胰岛素分泌均显著降低(P均0.01)。结论:INS-1E细胞在30 m M的葡萄糖中培养120 h形成稳定的葡萄糖毒性模型。  相似文献   

4.
Glucose-stimulated insulin secretion (GSIS) is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM). Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.  相似文献   

5.
6.
The cytosolic malic enzyme (ME1) has been suggested to augment insulin secretion via the malate-pyruvate and/or citrate-pyruvate shuttles, through the production of NADPH or other metabolites. We used selectable vectors expressing short hairpin RNA (shRNA) to stably decrease Me1 mRNA levels by 80–86% and ME1 enzyme activity by 78–86% with either of two shRNAs in the INS-1 832/13 insulinoma cell line. Contrary to published short term ME1 knockdown experiments, our long term targeted cells showed normal insulin secretion in response to glucose or to glutamine plus 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid. We found no increase in the mRNAs and enzyme activities of the cytosolic isocitrate dehydrogenase or glucose-6-phosphate dehydrogenase, which also produce cytosolic NADPH. There was no compensatory induction of the mRNAs for the mitochondrial malic enzymes Me2 or Me3. Interferon pathway genes induced in preliminary small interfering RNA experiments were not induced in the long term shRNA experiments. We repeated our study with an improved vector containing Tol2 transposition sequences to produce a higher rate of stable transferents and shortened time to testing, but this did not alter the results. We similarly used stably expressed shRNA to reduce mitochondrial NAD(P)-malic enzyme (Me2) mRNA by up to 95%, with severely decreased ME2 protein and a 90% decrease in enzyme activity. Insulin release to glucose or glutamine plus 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid remained normal. The maintenance of robust insulin secretion after lowering expression of either one of these malic enzymes is consistent with the redundancy of pathways of pyruvate cycling and/or cytosolic NADPH production in insulinoma cells.  相似文献   

7.
8.
For pancreatic β-cells to secrete insulin in response to elevated blood glucose, insulin granules retained within the subplasmalemmal space must be transported to sites of secretion on the plasma membrane. Using a combination of super-resolution STORM imaging and live cell TIRF microscopy we investigate how the organization and dynamics of the actin and microtubule cytoskeletons in INS-1 β-cells contribute to this process. GFP-labeled insulin granules display 3 different modes of motion (stationary, diffusive-like, and directed). Diffusive-like motion dominates in basal, low glucose conditions. Upon glucose stimulation no gross rearrangement of the actin cytoskeleton is observed but there are increases in the 1) rate of microtubule polymerization; 2) rate of diffusive-like motion; and 3) proportion of granules undergoing microtubule-based directed motion. By pharmacologically perturbing the actin and microtubule cytoskeletons, we determine that microtubule-dependent granule transport occurs within the subplasmalemmal space and that the actin cytoskeleton limits this transport in basal conditions, when insulin secretion needs to be inhibited.  相似文献   

9.
The response to intracellular ADP-ribose in the rat CRI-G1 insulinoma cell line was studied using a patch-clamp method. Dialysis of ADP-ribose into cells induced a response in a dose-dependent manner. The reversal potentials in various solutions showed that the ADP-ribose-gated channel was a Ca2+-permeable nonselective cation channel. In inside-out recordings, ADP-ribose and b-NAD induced responses in the same patch. The single-channel current-voltage relationships for ADP-ribose- and b-NAD-induced responses were almost identical, indicating that ADP-ribose and b-NAD activated the same channel. The physiological properties of the ADP-ribose-gated channel are similar to those we reported previously for the cloned transient receptor potential channel TRPM2. Moreover, RT-PCR analysis showed that TRPM2 was abundantly expressed in CRI-G1 cells, suggesting that the ADP-ribose-gated channel represents the native TRPM2 channel in CRI-G1 cells. These results suggest that ADP-ribose can be an endogenous modulator of Ca2+ influx through the TRPM2 channel into CRI-G1 cells.  相似文献   

10.
目的:从c-met对胰岛β细胞增殖,细胞周期、糖耐受和对GLUT2的表达影响三个方面探讨c-met在胰岛β细胞功能的影响及相关机制。方法:在大鼠胰岛β细胞系INS-1中运用RNA干扰技术(RNAi)抑制HGF的特异性受体c-met蛋白的表达,检测其在正常的生理状况下对成熟的胰岛β细胞增殖以及功能维持的作用。结果:c-met蛋白对成熟的胰岛β细胞的增殖与周期并没有显著影响,但对于β细胞的功能维持具有重要意义。结论:通过调节GLUT2蛋白来维持β细胞的胰岛素分泌功能,有助于进一步阐明HGF/c-met通路在胰岛β细胞功能损伤的分子机制,从而为糖尿病的预防和治疗提供新的理论依据。  相似文献   

11.
The SLC30A8 gene codes for a pancreatic beta-cell-expressed zinc transporter, ZnT8. A polymorphism in the SLC30A8 gene is associated with susceptibility to type 2 diabetes, although the molecular mechanism through which this phenotype is manifest is incompletely understood. Such polymorphisms may exert their effect via impacting expression level of the gene product. We used an shRNA-mediated approach to reproducibly downregulate ZnT8 mRNA expression by >90% in the INS-1 pancreatic beta cell line. The ZnT8-downregulated cells exhibited diminished uptake of exogenous zinc, as determined using the zinc-sensitive reporter dye, zinquin. ZnT8-downregulated cells showed reduced insulin content and decreased insulin secretion (expressed as percent of total insulin content) in response to hyperglycemic stimulus, as determined by insulin immunoassay. ZnT8-depleted cells also showed fewer dense-core vesicles via electron microscopy. These data indicate that reduced ZnT8 expression in cultured pancreatic beta cells gives rise to a reduced insulin response to hyperglycemia. In addition, although we provide no direct evidence, these data suggest that an SLC30A8 expression-level polymorphism could affect insulin secretion and the glycemic response in vivo.  相似文献   

12.
Recent studies indicated that Gene Associated with Retinoid-IFN-Induced Mortality 19 (GRIM-19), a newly discovered mitochondria-related protein, can regulate mitochondrial function and modulate cell viability possibly via interacting with STAT3 signal. In the present study we sought to test: 1) whether GRIM-19 is involved in high glucose (HG) induced altered cell metabolism in both cancer and cardiac cells, 2) whether GRIM-19/STAT3 signaling pathway plays a role in HG induced biological effects, especially whether AMPK activity could be involved. Our data showed that HG enhanced cell proliferation of both HeLa and H9C2 cells, which was closely associated with down-regulated GRIM-19 expression and increased phosphorylated STAT3 level. We showed that GRIM-19 knock-down alone in normal glucose cultured cells can also result in an increase in phosphorylated STAT3 level and enhanced proliferation capability, whereas GRIM-19 over-expression can abolished HG induced STAT3 activation and enhanced cell proliferation. Importantly, both down-regulated or over-expression of GRIM-19 increased lactate production in both HeLa and H9C2 cells. The activated STAT3 was responsible for increased cell proliferation as either AG-490, an inhibitor of JAK2, or siRNA targeting STAT3 can attenuate cell proliferation increased by HG. In addition, HG increased lactate acid levels in HeLa cells, which was also observed when GRIM-19 was genetically manipulated. However, HG did not affect the lactate levels in H9C2 cells. Of note, over-expression of GRIM-19 and silencing of STAT3 both increased lactate production in H9C2 cells. As expected, HG resulted in significant decreases in phosphorylated AMPKα levels in H9C2 cells, but not in HeLa cells. Interestingy, activation of AMPKα by metformin was associated with a reversal of the suppressed GRIM-19 expression in H9C2 cells, the fold of changes in GRIM-19 expression by metformin were much less in HeLa cells. Metformin did not affect the phosphorylated STAT3 lelvels, however, decreased its levels in H9C2, especially in the setting of HG culture. Not like HG alone which resulted in no changes in lactate acid in H9C2 cells, metformin can increase lactate acid levels in H9C2 cells. Increased lactate induced by metformin was also observed in HeLa cells.  相似文献   

13.
The uncarboxylated form (ucOC), but not the γ-carboxylated form (GlaOC), of the bone-derived protein osteocalcin stimulates insulin secretion and regulates energy metabolism in insulin target tissues. Glucagon-like peptide–1 (GLP-1) is an insulin secretagogue that is released from the gut in response to food intake. We have now found that Gprc6a, a putative ucOC receptor, is expressed in epithelial cells of the mouse small intestine as well as in STC-1 enteroendocrine cells. Secretion of GLP-1 by STC-1 cells was stimulated by ucOC but not by GlaOC. The serum GLP-1 concentration in mice was increased by intraperitoneal or oral administration of ucOC, whereas GlaOC was effective in this regard only after oral application. Serum insulin levels were also increased by ucOC, and this effect was potentiated by an inhibitor of dipeptidyl peptidase IV and blocked by a GLP-1 receptor antagonist. Intravenous injection of ucOC in mice increased the serum GLP-1 concentration, and also increased the serum level of insulin. Our results suggest that ucOC acts via Gprc6a to induce GLP-1 release from the gut, and that the stimulatory effect of ucOC on insulin secretion is largely mediated by GLP-1.  相似文献   

14.
Uncoupling protein 2 (UCP2) regulates glucose-stimulated insulin secretion in pancreatic beta-cells. UCP2 content, measured by calibrated immunoblot in INS-1E insulinoma cells (a pancreatic beta-cell model) grown in RPMI medium, and INS-1E mitochondria, was 2.0 ng/million cells (7.9 ng/mg mitochondrial protein). UCP2 content was lower in cells incubated without glutamine and higher in cells incubated with 20 mM glucose, and varied from 1.0-4.4 ng/million cells (2.7-14.5 ng/mg mitochondrial protein). This dynamic response to nutrients was achieved by varied expression rates against a background of a very short UCP2 protein half-life of about 1 h.  相似文献   

15.
In non-obese diabetic (NOD) mice, diabetes incidence is reduced by a gluten-free diet. Gluten peptides, such as the compound gliadin, can cross the intestinal barrier and may directly affect pancreatic beta cells. We investigated the effects of enzymatically-digested gliadin in NOD mice, INS-1E cells and rat islets. Six injections of gliadin digest in 6-week-old NOD mice did not affect diabetes development, but increased weight gain (20% increase by day 100). In INS-1E cells, incubation with gliadin digest induced a dose-dependent increase in insulin secretion, up to 2.5-fold after 24 hours. A similar effect was observed in isolated rat islets (1.6-fold increase). In INS-1E cells, diazoxide reduced the stimulatory effect of gliadin digest. Additionally, gliadin digest was shown to decrease current through KATP-channels. A specific gliadin 33-mer had a similar effect, both on current and insulin secretion. Finally, INS-1E incubation with gliadin digest potentiated palmitate-induced insulin secretion by 13% compared to controls. Our data suggest that gliadin fragments may contribute to the beta-cell hyperactivity observed prior to the development of type 1 diabetes.  相似文献   

16.
The SLC25 carrier family mediates solute transport across the inner mitochondrial membrane, a process that is still poorly characterized regarding both the mechanisms and proteins implicated. This study investigated mitochondrial glutamate carrier GC1 in insulin-secreting β-cells. GC1 was cloned from insulin-secreting cells, and sequence analysis revealed hydropathy profile of a six-transmembrane protein, characteristic of mitochondrial solute carriers. GC1 was found to be expressed at the mRNA and protein levels in INS-1E β-cells and pancreatic rat islets. Immunohistochemistry showed that GC1 was present in mitochondria, and ultrastructural analysis by electron microscopy revealed inner mitochondrial membrane localization of the transporter. Silencing of GC1 in INS-1E β-cells, mediated by adenoviral delivery of short hairpin RNA, reduced mitochondrial glutamate transport by 48% (p < 0.001). Insulin secretion at basal 2.5 mm glucose and stimulated either by intermediate 7.5 mm glucose or non-nutrient 30 mm KCl was not modified by GC1 silencing. Conversely, insulin secretion stimulated with optimal 15 mm glucose was reduced by 23% (p < 0.005) in GC1 knocked down cells compared with controls. Adjunct of cell-permeant glutamate (5 mm dimethyl glutamate) fully restored the secretory response at 15 mm glucose (p < 0.005). Kinetics of insulin secretion were investigated in perifused isolated rat islets. GC1 silencing in islets inhibited the secretory response induced by 16.7 mm glucose, both during first (−25%, p < 0.05) and second (−33%, p < 0.05) phases. This study demonstrates that insulin-secreting cells depend on GC1 for maximal glucose response, thereby assigning a physiological function to this newly identified mitochondrial glutamate carrier.Functions of mitochondria require regulated flux of molecules across the two membranes surrounding the matrix. Mitochondrial solute carriers (SLC25) are a large family of nuclearly encoded membrane-embedded proteins that promote solute transport across the inner mitochondrial membrane (14). The human genome contains 48 members of the SLC25 family, among them about 30 have been identified and characterized biochemically (1, 58). In particular, very little is known on solute carrier proteins transporting metabolites, such as glutamate. The two isoforms of the glutamate carrier GC1 and GC2 (encoded by SLC25A22 and SLC25A18, respectively) catalyze the transport of glutamate across the inner mitochondrial membrane, either by proton co-transport or in exchange for hydroxyl ions. To date, one human pathology has been associated with GC1, exhibiting a correlation between GC1 mutation and neonatal myoclonic epilepsy (9). Of interest, the high Km isoform GC1 was shown to be expressed in different tissues, especially in the brain, liver, and pancreas (10). Despite the importance of these studies, we still lack subcellular localization and demonstration of the physiological function of glutamate carriers. The elevated expression levels in the pancreas triggered our interest, given that the glutamate pathway has been highlighted over the last years in the endocrine pancreas in general and the β-cell in particular (11). Still, the putative mechanisms responsible for mitochondrial glutamate transport have not yet been characterized in specialized tissues such as insulin-secreting cells. Only two carriers involved in mitochondrial shuttles have been shown to play an important role in the control of insulin secretion, i.e. the aspartate/glutamate carrier (AGC1 or Aralar1) (12) and the citrate/isocitrate carrier (13).It is well founded that mitochondrial metabolism is crucial in pancreatic β-cells by generating signals involved in metabolism-secretion coupling (14). Upon glucose stimulation, generation of ATP through mitochondrial activation leads to the closure of ATP-sensitive K+ channels and depolarization of the plasma membrane (15). This, in turn, induces the opening of voltage-dependent calcium channels resulting in elevation of cytosolic Ca2+ (16). Ca2+ is necessary but not sufficient for the full development of the insulin secretory response (17). Other messengers have been proposed to contribute to stimulation of insulin exocytosis, such as protein kinases A and C, long chain acyl-CoAs, nucleotides, and glutamate (18). The involvement of the latter amino acid was deduced from experiments performed under conditions of intracellular [Ca2+] clamped at permissive concentrations, during which intracellular provision of glutamate directly stimulated insulin exocytosis (1921). Based on these results, it was proposed that glutamate could act downstream of mitochondrial function, participating in the coupling of glucose metabolism to insulin secretion (21). The importance of the glutamate pathway for β-cell function is illustrated in transgenic mice (named βGlud1/) with conditional β-cell-specific deletion of the mitochondrial enzyme glutamate dehydrogenase, resulting in about 40% reduction of glucose-stimulated insulin secretion (22). The exact role of glutamate in β-cell function is still debated as the glutamate pathway might raise insulin release by participating in the amplifying pathway (1921) and/or by relaying signals of protein abundance to mitochondria (2325). In both models, glutamate should be transported in and out of the mitochondria by some putative mitochondrial carrier that remains to be identified in β-cells. Overall, better characterization of mitochondrial glutamate handling will contribute to our comprehension of mechanisms implicated in the control of insulin secretion.In this study, we identified glutamate carrier GC1 as being expressed in the inner mitochondrial membrane of insulinoma INS-1E cells as well as in primary rat islets. Adenovirus-mediated knockdown of GC1 by shRNA2 demonstrated physiological functionality of GC1 in insulin secretion.  相似文献   

17.
The metabolic coupling of insulin secretion by pancreatic beta cells is mediated by membrane depolarization due to increased glucose-driven ATP production and closure of K(ATP) channels. Alternative pathways may involve the activation of anion channels by cell swelling upon glucose uptake. In INS-1E insulinoma cells superfusion with an isotonic solution containing 20 mM glucose or a 30% hypotonic solution leads to the activation of a chloride conductance with biophysical and pharmacological properties of anion currents activated in many other cell types during regulatory volume decrease (RVD), i.e. outward rectification, inactivation at positive membrane potentials and block by anion channel inhibitors like NPPB, DIDS, 4-hydroxytamoxifen and extracellular ATP. The current is not inhibited by tolbutamide and remains activated for at least 10 min when reducing the extracellular glucose concentration from 20 mM to 5 mM, but inactivates back to control levels when cells are exposed to a 20% hypertonic extracellular solution containing 20 mM glucose. This chloride current can likewise be induced by 20 mM 3-Omethylglucose, which is taken up but not metabolized by the cells, suggesting that cellular sugar uptake is involved in current activation. Fluorescence resonance energy transfer (FRET) experiments show that chloride current activation by 20 mM glucose and glucose-induced cell swelling are accompanied by a significant, transient redistribution of the membrane associated fraction of ICln, a multifunctional 'connector hub' protein involved in cell volume regulation and generation of RVD currents.  相似文献   

18.
Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases.  相似文献   

19.
Lipid signals derived from lipolysis and membrane phospholipids play an important role in glucose-stimulated insulin secretion (GSIS), though the exact secondary signals remain unclear. Previous reports have documented a stimulatory role of exogenously added mono-acyl-glycerol (MAG) on insulin secretion from cultured β-cells and islets. In this report we have determined effects of increasing intracellular MAG in the β-cell by inhibiting mono-acyl-glycerol lipase (MGL) activity, which catalyzes the final step in triacylglycerol breakdown, namely the hydrolysis of MAG to glycerol and free fatty acid (FA). To determine the role of MGL in GSIS, we used three different pharmacological agents (JZL184, MJN110 and URB602). All three inhibited GSIS and depolarization-induced insulin secretion in INS-1 (832/13). JZL184 significantly inhibited both GSIS and depolarization-induced insulin secretion in rat islets. JZL184 significantly decreased lipolysis and increased both mono- and diacyglycerol species in INS-1 cells. Analysis of the kinetics of GSIS showed that inhibition was greater during the sustained phase of secretion. A similar pattern was observed in the response of Ca2+ to glucose and depolarization but to a lesser degree suggesting that altered Ca2+ handling alone could not explain the reduction in insulin secretion. In addition, a significant reduction in long chain-CoA (LC-CoA) was observed in INS-1 cells at both basal and stimulatory glucose following inhibition of MGL. Our data implicate an important role for MGL in insulin secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号