首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ribonucleoprotein Male Specific Lethal (MSL) complex is required for X chromosome dosage compensation in Drosophila melanogaster males. Beginning at 3 h of development the MSL complex binds transcribed X-linked genes and modifies chromatin. A subset of MSL complex proteins, including MSL1 and MSL3, is also necessary for full expression of autosomal heterochromatic genes in males, but not females. Loss of the non-coding roX RNAs, essential components of the MSL complex, lowers the expression of heterochromatic genes and suppresses position effect variegation (PEV) only in males, revealing a sex-limited disruption of heterochromatin. To explore the molecular basis of this observation we examined additional proteins that participate in compensation and found that MLE, but not Jil-1 kinase, contributes to heterochromatic gene expression. To determine if identical regions of roX RNA are required for dosage compensation and heterochromatic silencing, we tested a panel of roX1 transgenes and deletions and find that the X chromosome and heterochromatin functions are separable by some mutations. Chromatin immunoprecipitation of staged embryos revealed widespread autosomal binding of MSL3 before and after localization of the MSL complex to the X chromosome at 3 h AEL. Autosomal MSL3 binding was dependent on MSL1, supporting the idea that a subset of MSL proteins associates with chromatin throughout the genome during early development. The broad localization of these proteins early in embryogenesis supports the idea of direct action at autosomal sites. We postulate that this may contribute to the sex-specific differences in heterochromatin that we, and others, have noted.  相似文献   

2.
3.
4.
The male-specific lethal (MSL) protein-RNA complex is required for X chromosome dosage compensation in Drosophila melanogaster. The MSL2 and MSL1 proteins form a complex and are essential for X chromosome binding. In addition, the MSL complex must integrate at least one of the noncoding roX RNAs for normal X chromosome binding. Here we find the amino-terminal RING finger domain of MSL2 binds as a complex with MSL1 to the heterochromatic chromocenter and a few sites on the chromosome arms. This binding required the same amino-terminal basic motif of MSL1 previously shown to be essential for binding to high-affinity sites on the X chromosome. While the RING finger domain of MSL2 is sufficient to increase the expression of roX1 in females, activation of roX2 requires motifs in the carboxyl-terminal domain. Binding to hundreds of sites on the X chromosome and efficient incorporation of the roX RNAs into the MSL complex require proline-rich and basic motifs in the carboxyl-terminal domain of MSL2. We suggest that incorporation of the roX RNAs into the MSL complex alters the binding specificity of the chromatin-binding module formed by the amino-terminal domains of MSL1 and MSL2.  相似文献   

5.
Dimorphic sex chromosomes create problems. Males of many species, including Drosophila, are heterogametic, with dissimilar X and Y chromosomes. The essential process of dosage compensation modulates the expression of X-linked genes in one sex to maintain a constant ratio of X to autosomal expression. This involves the regulation of hundreds of dissimilar genes whose only shared property is chromosomal address. Drosophila males dosage compensate by up regulating X-linked genes 2 fold. This is achieved by the Male Specific Lethal (MSL) complex, which is recruited to genes on the X chromosome and modifies chromatin to increase expression. How the MSL complex is restricted to X-linked genes remains unknown. Recent studies of sex chromosome evolution have identified a central role for 2 types of repetitive elements in X recognition. Helitrons carrying sites that recruit the MSL complex have expanded across the X chromosome in at least one Drosophila species.1 Our laboratory found that siRNA from an X-linked satellite repeat promotes X recognition by a yet unknown mechanism.2 The recurring adoption of repetitive elements as X-identify elements suggests that the large and mysterious fraction of the genome called “junk” DNA is actually instrumental in the evolution of sex chromosomes.  相似文献   

6.

Background  

The Drosophila Male Specific Lethal (MSL) complex contains chromatin modifying enzymes and non-coding roX RNA. It paints the male X at hundreds of bands where it acetylates histone H4 at lysine 16. This epigenetic mark increases expression from the single male X chromosome approximately twofold above what gene-specific factors produce from each female X chromosome. This equalises X-linked gene expression between the sexes. Previous screens for components of dosage compensation relied on a distinctive male-specific lethal phenotype.  相似文献   

7.
8.
9.
10.
11.
Dosage compensation refers to the equal expression between the sexes despite the fact that the dosage of the X chromosome is different in males and females. In Drosophila there is a twofold upregulation of the single male X. In triple X metafemales, there is also dosage compensation, which occurs by a two-thirds downregulation. There is a concomitant reduction in expression of many autosomal genes in metafemales. The male specific lethal (MSL) complex is present on the male X chromosome. Evidence is discussed showing that the MSL complex sequesters a histone acetyltransferase to the X chromosome to mute an otherwise increased expression by diminishing the histone acetylation on the autosomes. Several lines of evidence indicate that a constraining activity occurs from the MSL complex to prevent overcompensation on the X that might otherwise occur from the high level of acetylation present. Together, the evidence suggests that dosage compensation is a modification of a regulatory inverse dosage effect that is a reflection of intrinsic gene regulatory mechanisms and that the MSL complex has evolved in reaction in order to equalize the expression on both the X and autosomes of males and females.  相似文献   

12.
13.
14.
The eukaryotic genome is assembled into distinct types of chromatin. Gene-rich euchromatin has active chromatin marks, while heterochromatin is gene-poor and enriched for silencing marks. In spite of this, genes native to heterochromatic regions are dependent on their normal environment for full expression. Expression of genes in autosomal heterochromatin is reduced in male flies mutated for the noncoding roX RNAs, but not in females. roX mutations also disrupt silencing of reporter genes in male, but not female, heterochromatin, revealing a sex difference in heterochromatin. We adopted a genetic approach to determine how this difference is regulated, and found no evidence that known X chromosome counting elements, or the sex determination pathway that these control, are involved. This suggested that the sex chromosome karyotype regulates autosomal heterochromatin by a different mechanism. To address this, candidate genes that regulate chromosome organization were examined. In XX flies mutation of Topoisomerase II (Top2), a gene involved in chromatin organization and homolog pairing, made heterochromatic silencing dependent on roX, and thus male-like. Interestingly, Top2 also binds to a large block of pericentromeric satellite repeats (359 bp repeats) that are unique to the X chromosome. Deletion of X heterochromatin also makes autosomal heterochromatin in XX flies dependent on roX and enhances the effect of Top2 mutations, suggesting a combinatorial action. We postulate that Top2 and X heterochromatin in Drosophila comprise a novel karyotype-sensing pathway that determines the sensitivity of autosomal heterochromatin to loss of roX RNA.  相似文献   

15.
The upregulation of the JIL-1 kinase on the male X chromosome and its association with the male-specific lethal (MSL) complex suggest that JIL-1 may play a role in regulating dosage compensation. To directly test this hypothesis we measured eye pigment levels of mutants in the X-linked white gene in an allelic series of JIL-1 hypomorphic mutants. We show that dosage compensation of w(a) alleles that normally do exhibit dosage compensation was severely impaired in the JIL-1 mutant backgrounds. As a control we also examined a hypomorphic white allele w(e) that fails to dosage compensate in males due to a pogo element insertion. In this case the relative pigment level measured in males as compared to females remained approximately the same even in the most severe JIL-1 hypomorphic background. These results indicate that proper dosage compensation of eye pigment levels in males controlled by X-linked white alleles requires normal JIL-1 function.  相似文献   

16.
17.
Study of dosage compensation in Drosophila   总被引:1,自引:0,他引:1  
Chiang PW  Kurnit DM 《Genetics》2003,165(3):1167-1181
Using a sensitive RT-QPCR assay, we analyzed the regulatory effects of sex and different dosage compensation mutations in Drosophila. To validate the assay, we showed that regulation for several genes indeed varied with the number of functional copies of that gene. We then confirmed that dosage compensation occurred for most genes we examined in male and female flies. Finally, we examined the effects on regulation of several genes in the MSL pathway, presumed to be involved in sex-dependent determination of regulation. Rather than seeing global alterations of either X chromosomal or autosomal genes, regulation of genes on either the X chromosome or the autosomes could be elevated, depressed, or unaltered between sexes in unpredictable ways for the various MSL mutations. Relative dosage for a given gene between the sexes could vary at different developmental times. Autosomal genes often showed deranged regulatory levels, indicating they were in pathways perturbed by X chromosomal changes. As exemplified by the BR-C locus and its dependent Sgs genes, multiple genes in a given pathway could exhibit coordinate regulatory modulation. The variegated pattern shown for expression of both X chromosomal and autosomal loci underscores the complexity of gene expression so that the phenotype of MSL mutations does not reflect only simple perturbations of genes on the X chromosome.  相似文献   

18.
J. R. Bone  M. I. Kuroda 《Genetics》1996,144(2):705-713
In the fruitfly Drosophila melanogaster, the four male-specific lethal (msl) genes are required to achieve dosage compensation of the male X chromosome. The MSL proteins are thought to interact with cis-acting sites that confer dosage compensation to nearby genes, as they are detected at hundreds of discrete sites along the length of the polytene X chromosome in males but not in females. The histone H4 acetylated isoform, H4Ac16, colocalizes with the MSL proteins at a majority of sites on the D. melanogaster X chromosome. Using polytene chromosome immunostaining of other species from the genus Drosophila, we found that X chromosome association of MSL proteins and H4Ac16 is conserved despite differences in the sex chromosome karyotype between species. Our results support a model in which cis-acting regulatory sites for dosage compensation evolve on a neo-X chromosome arm in response to the degeneration of its former homologue.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号