首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD59 and membrane cofactor protein (MCP, CD46) are widely expressed cell surface glycoproteins that protect host cells from the effect of homologous complement attack. cDNAs encoding human CD59 and MCP cloned from Chinese human embryo were separately transfected into NIH/3T3 cells resulting in the expression of human CD59 and MCP protein on the cell surface. The functional properties of expressed proteins were studied. When the transfected cells were exposed to human serum as a source of complement and naturally occurring anti-mouse antibody, they were resistant to human complement-mediated cell killing. However, the cells remained sensitive to rabbit and guinea pig complement. Human CD59 and MCP can only protect NIH/3T3 cells from human complement-mediated lysis. These results demonstrated that complement inhibitory activity of these proteins is species-selective. The cDNAs of CD59 and MCP were also separately transfected into the endothelial cells (ECs) of the pigs transgenic for the human DAF gene to investigate a putative synergistic action. The ECs expressing both DAF and MCP proteins or both DAF and CD59 proteins exhibited more protection against cytolysis by human serum compared to the cells with only DAF expressed alone.  相似文献   

2.
The in vivo persistence of gene-modified cells may be limited by the development of a host immune response to vector-encoded proteins. Herpesviruses evade cytotoxic T-lymphocyte (CTL) recognition by expressing genes which interfere selectively with presentation of viral antigens by class I major histocompatibility complex (MHC) molecules. Here, we studied the use of retroviral vectors encoding herpes simplex virus ICP47, human cytomegalovirus (HCMV) US3, or HCMV US11 to decrease presentation of viral proteins and transgene products to CD8(+) CTL. Human fibroblasts and T cells transduced to express the ICP47, US3, or US11 genes alone exhibited a decrease in cell surface class I MHC expression. The combination of ICP47 and US11 rendered fibroblasts negative for surface class I MHC and allowed a class I MHC-low population of T cells to be sorted by flow cytometry. Fibroblasts and T cells expressing both ICP47 and US11 were protected from CTL-mediated lysis and failed to stimulate specific memory T-cell responses to transgene products in vitro. Our findings suggest that expression of immunoregulatory viral gene products could be a potential strategy to prolong transgene expression in vivo.  相似文献   

3.
Complement activation may predispose to vascular injury and atherogenesis. The atheroprotective actions of unidirectional laminar shear stress led us to explore its influence on endothelial cell expression of complement inhibitory proteins CD59 and decay-accelerating factor. Human umbilical vein and aortic endothelial cells were exposed to laminar shear stress (12 dynes/cm(2)) or disturbed flow (+/- 5 dynes/cm(2) at 1Hz) in a parallel plate flow chamber. Laminar shear induced a flow rate-dependent increase in steady-state CD59 mRNA, reaching 4-fold at 12 dynes/cm(2). Following 24-48 h of laminar shear stress, cell surface expression of CD59 was up-regulated by 100%, whereas decay-accelerating factor expression was unchanged. The increase in CD59 following laminar shear was functionally significant, reducing C9 deposition and complement-mediated lysis of flow-conditioned endothelial cells by 50%. Although CD59 induction was independent of PI3-K, ERK1/2 and nitric oxide, an RNA interference approach demonstrated dependence upon an ERK5/KLF2 signaling pathway. In contrast to laminar shear stress, disturbed flow failed to induce endothelial cell CD59 protein expression. Likewise, CD59 expression on vascular endothelium was significantly higher in atheroresistant regions of the murine aorta exposed to unidirectional laminar shear stress, when compared with atheroprone areas exposed to disturbed flow. We propose that up-regulation of CD59 via ERK5/KLF2 activation leads to endothelial resistance to complement-mediated injury and protects from atherogenesis in regions of laminar shear stress.  相似文献   

4.

Background

Membrane complement regulatory proteins (mCRPs) inhibit complement-mediated killing of human cells by human complement, a property that confers protection from complement to malignant breast cancer cells and that thwarts some immunotherapies. Metabolic mechanisms may come into play in protecting cancer cells from the complement system subsequent to relatively low levels of complement deposition.

Results

In differentiating these mechanisms, two types of human breast cancer cell lines, MCF7 (adenocarcinoma) and Bcap37 (medullary carcinoma) were cell-cycle synchronized using glutamine-deprivation followed by restoration. These cells were examined for the expression of two mCRPs (CD59 and CD55), and for subsequent susceptibility to antibody-mediated complement-induced membrane damage. After glutamine restoration, MCF7 and Bcap37 cells were synchronized into the G2/M phase and an average increased expression of CD59 and CD55 occurred with a corresponding resistance to complement-mediated damage. Blocking CD59 inhibitory function with monoclonal antibody revealed that CD59 played a key role in protecting unsynchronized Bcap37 and MCF7 cancer cells from the complement membrane attack complex. Interestingly, glutamine-deprivation did not significantly affect the expression of proteins e.g., the surface level of CD59 or CD55, but did increase the susceptibility to complement-mediated killing. One possible explanation is that glutamine-deprivation may have slowed the turnover rate of mCRPs, preventing the cells from replacing pre-existing mCRPs, as they became neutralized by covalent C4b and C3b depositions.

Conclusion

Taken together the findings are consistent with the conclusion that future immunotherapies should aim to achieve a highly specific and profound activation and deposition of complement as well as to disrupt the synthesis and expression of CD59 and CD55 by the cancer cells.  相似文献   

5.
Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.  相似文献   

6.
Gene-deleted mice have provided a potent tool in efforts to understand the roles of complement and complement-regulating proteins in vivo. In particular, mice deficient in the membrane regulators complement receptor 1-related gene/protein y, decay-accelerating factor, or CD59 have demonstrated homeostatic relevance and backcrossing between the strains has revealed cooperativity in regulation. In mouse, genes encoding decay-accelerating factor and CD59 have been duplicated and show differential expression in tissues, complicating interpretation and extrapolation of findings to man. The first described form of CD59, CD59a, is broadly distributed and deletion of the cd59a gene causes a mild hemolytic phenotype with increased susceptibility in complement-mediated disease models. The distribution of the second form, CD59b, was originally described as testis specific, but later by some as widespread. Deletion of the cd59b gene caused a severe hemolytic and thrombotic phenotype. To apply data from these mouse models to man it is essential to know the relative distribution and functional roles of these two forms of CD59. We have generated new specific reagents and used them in sensitive quantitative analyses to comprehensively characterize expression of mRNA and protein and functional roles of CD59a and CD59b in wild-type (wt) and CD59a-negative mice. cd59b mRNA was detected only in testis and, at very low levels, in bone marrow. CD59b protein was present on mature spermatozoa and precursors and, in trace amounts, erythrocytes. Erythrocyte CD59b did not inhibit complement lysis except when CD59a was absent or blocked. These data confirm that CD59a is the primary regulator of complement membrane attack in mouse.  相似文献   

7.
In the female reproductive tract, the complement system represents a defense mechanism that can act directly against pathogens and cells, and mediates inflammatory response. Endometrial cells are protected from autologous complement attack by membrane-bound complement regulatory proteins (CRPs) that prevent complement activation: membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59). In this work we show that all CRPs were overexpressed after LPS exposure. Maximal stimulatory effect was detected after 6h, and was declining after 12h, reaching control levels in 24h. CD59 was the protein showing the more prominent effect. There seems to be a slight increase of CRP expression in the endometrium of sterile patients that have anti-endometrial antibodies (AEA) in their serum. Our results suggest that under stress, the high expression of CRPs (CD46, CD55, and CD59) could protect endometrial injured cells against complement mediated lysis. The survival of these cells with some biochemical modifications would enable autoimmune response.  相似文献   

8.
Recombinant soluble complement inhibitors hold promise for the treatment of inflammatory disease and disease states associated with transplantation. Targeting complement inhibitors to the site of complement activation and disease may enhance their efficacy and safety. Data presented show that targeting of decay-accelerating factor (DAF, an inhibitor of complement activation) to a cell surface by means of antibody fragments is feasible and that cell-targeted DAF provides significantly enhanced protection from complement deposition and lysis compared with soluble untargeted DAF. An extracellular region of DAF was joined to an antibody combining site with specificity for the hapten dansyl, at the end of either C(H)1 or C(H)3 Ig regions. The recombinant IgG-DAF chimeric proteins retained antigen specificity and bound to dansylated Chinese hamster ovary cells. Both soluble C(H)1-DAF and C(H)3-DAF were effective at inhibiting complement-mediated lysis of untargeted Chinese hamster ovary cells at molar concentrations within the range reported by others for soluble DAF. However, when targeted to a dansyl-labeled cell membrane, C(H)1-DAF was significantly more potent at inhibiting complement deposition and complement-mediated lysis. Cell-bound C(H)1-DAF also provided cells with protection from complement lysis after removal of unbound C(H)1-DAF. Of further importance, the insertion of a nonfunctional protein domain of DAF (the N-terminal short consensus repeat) between C(H)1 and the functional DAF domain increased activity of the fusion protein. In contrast to C(H)1-DAF, C(H)3-DAF was not significantly better at protecting targeted versus untargeted cells from complement, indicating that a small targeting vehicle is preferable to a large one. We have previously shown that for effective functioning of soluble complement inhibitor CD59, binding of CD59 to the cell surface close to the site of complement activation is required. Significantly, such a constraint did not apply for effective DAF function.  相似文献   

9.
Of over 20 nucleated cell lines we have examined to date, human H2 glioblastoma cells have turned out to be the most resistant to complement-mediated cytolysis in vitro. H2 cells expressed strongly the membrane attack complex inhibitor protectin (CD59), moderately CD46 (membrane cofactor protein) and CD55 (decay-accelerating factor), but no CD35 (complement receptor 1). When treated with a polyclonal anti-H2 Ab, anti-CD59 mAb, and normal human serum, only 5% of H2 cells became killed. Under the same conditions, 70% of endothelial-like EA.hy 926 cells and 40% of U251 control glioma cells were killed. A combined neutralization of CD46, CD55, and CD59 increased H2 lysis only minimally, demonstrating that these complement regulators are not enough to account for the resistance of H2 cells. After treatment with Abs and serum, less C5b-9 was deposited on H2 than on U251 and EA.hy 926 cell lines. A reason for the exceptional resistance of H2 cells was revealed when RT-PCR and protein biochemical methods showed that the H2 cells, unlike the other cell lines tested, actively produced the soluble complement inhibitors factor H and factor H-like protein 1. H2 cells were also capable of binding human factor H from the fluid phase to their cell surface and promoted the cleavage of C3b to its inactive form iC3b more efficiently than U251 and EA.hy 926 cells. In accordance, anti-factor H mAbs enhanced killing of H2 glioblastoma cells. Taken together, our results show that production and binding of factor H and factor H-like protein 1 is a novel mechanism that these malignant cells utilize to escape complement-mediated killing.  相似文献   

10.
Human cytomegalovirus (HCMV) downregulates the class I major histocompatibility complexes (MHCs), HLA-A and -B, in infected fibroblasts to escape from antigen-specific cytotoxic T lymphocytes. The HCMV genes responsible for the downregulation of MHCs are US2, US3, US6, and US11, which encode type I membrane proteins working at the endoplasmic reticulum (ER). However, it is largely unknown whether HCMV downregulates the class I MHC molecules in placental extravillous cytotrophoblasts (EVT), which express HLA-C, -E, and -G to protect a semiallogenic fetus from maternal natural killer (NK) cells at the fetomaternal interface. Here, we report that differentiated EVT prepared from human first-trimester chorionic villi persistently express class I MHC molecules upon HCMV infection. When these US proteins were expressed in uninfected EVT, they were localized at the ER in the entire cytoplasm. However, subsequent HCMV infection resulted in dissociation of these US proteins from the ER, which relocated toward the cell membrane. In fibroblasts, these US proteins were localized at the ER before and after HCMV infection. These results suggest that the US gene products are not integrated into ER of HCMV-infected EVT and fail to downregulate class I MHC molecules.  相似文献   

11.
Membrane-anchored complement regulatory proteins (CRPs), including CD46, CD55, and CD59, protect host cells from complement attack. In the present study, we investigated whether periodontopathogen lipopolysaccharide and proinflammatory cytokines modulate CRP gene/protein expression in human oral epithelial cells. The lipopolysaccharide of Treponema denticola and Tannerella forsythia were the most potent for increasing the gene expression of CD55 and CD59, and to a lesser extent CD46, after a 48-h stimulation. An lipopolysaccharide-induced upregulation of epithelial cell-surface CRP was also demonstrated. The stimulation of epithelial cells with lipopolysaccharide was associated with interleukin-6 (IL-6) and IL-8 secretion. Although these two cytokines had no effect on CD46 and CD55 gene expression in epithelial cells, IL-1β and tumor necrosis factor-α induced a significant upregulation. The cell-surface expression of CRP was also increased by the stimulation of epithelial cells with cytokines. The CD46, CD55, and CD59 gene/protein expression was upregulated by periodontopathogen lipopolysaccharide and proinflammatory cytokines. It can be hypothesized that, when faced with bacterial challenges and inflammatory conditions associated with active periodontal sites, oral epithelial cells may respond by increasing CRP gene/protein expression to avoid cell lysis by the complement system, which is activated during periodontitis.  相似文献   

12.
Malignant cells are often resistant to complement activation through the enhanced expression of complement inhibitors. In this work, we examined the protective role of factor H, CD46, CD55, and CD59 in two non-small cell lung cancer cell lines, H1264 and A549, upon activation of the classical pathway of complement. Complement was activated with polyclonal Abs raised against each cell line. After blocking factor H activity with a neutralizing Ab, C3 deposition and C5a release were more efficient. Besides, a combined inhibition of factor H and CD59 significantly increased complement-mediated lysis. CD46 and CD55 did not show any effect in the control of complement activation. Factor H expression was knockdown on A549 cells using small interfering RNA. In vivo growth of factor H-deficient cells in athymic mice was significantly reduced. C3 immunocytochemistry on explanted xenografts showed an enhanced activation of complement in these cells. Besides, when mice were depleted of complement with cobra venom factor, growth was recovered, providing further evidence that complement was important in the reduction of in vivo growth. In conclusion, we show that expression of the complement inhibitor factor H by lung cancer cells can prevent complement activation and improve tumor development in vivo. This may have important consequences in the efficiency of complement-mediated immunotherapies.  相似文献   

13.

Objectives

Paroxysmal nocturnal hemoglobinemia (PNH) is a rare but serious condition characterized by complement-mediated red blood cell (RBC) hemolysis and episodic thrombotic attack. It results from decay accelerating factor (CD55), and protectin (CD59), becoming attached to RBC and other cell surfaces. Absence of these protective proteins leaves such cells vulnerable to self attack at the C3 convertase and membrane attack complex (MAC) stages of complement activation. We have previously reported that aurin tricarboxylic acid (ATA) is an orally effective agent that selectively blocks complement activation at the C3 convertase stage as well as MAC formation at the C9 insertion stage.

Design and Methods

We used a CH50 assay method and western blot analysis to investigate the vulnerability to complement attack of PNH RBCs compared with normal RBCs. Zymosan was used as the activator of normal serum and PNH serum. ATA was added to the sera to determine the concentration necessary to protect the RBCs from lysis by the zymosan-activated sera.

Results

We found that erythrocytes from PNH patients on long term treatment with eculizumab were twice as vulnerable as normal erythrocytes to lysis induced by complement activated serum. Western blot data showed the presence of both C3 and C5 convertases on the PNH patient erythrocyte membranes. These data indicate persistent vulnerability of PNH erythrocytes to complement attack due to deficiencies in CD55 and CD59. ATA, when added to serum in vitro, protected PNH erythrocytes from complement attack, restoring their resistance to that of normal erythrocytes.

Conclusions

We conclude that ATA, by protecting PNH erythrocytes from their decay accelerating factor (CD55) and protectin (CD59) deficiencies, may be an effective oral treatment in this disorder.  相似文献   

14.
The genome analysis of Kaposi's sarcoma-associated herpesvirus (KSHV) has revealed the presence of an open reading frame (ORF 4) with sequence homology to complement control proteins. To assign a function to this protein, we have now expressed this ORF using the Pichia expression system and shown that the purified protein inhibited human complement-mediated lysis of erythrocytes, blocked cell surface deposition of C3b (the proteolytically activated form of C3), and served as a cofactor for factor I-mediated inactivation of complement proteins C3b and C4b (the subunits of C3 convertases). Thus, our data indicate that this KSHV inhibitor of complement activation (kaposica) provides a mechanism by which KSHV can subvert complement attack by the host.  相似文献   

15.
Human cytomegalovirus (HCMV) establishes persistent lifelong infections and replicates slowly. To withstand robust immunity, HCMV utilizes numerous immune evasion strategies. The HCMV gene cassette encoding US2 to US11 encodes four homologous glycoproteins, US2, US3, US6, and US11, that inhibit the major histocompatibility complex class I (MHC-I) antigen presentation pathway, probably inhibiting recognition by CD8(+) T lymphocytes. US2 also inhibits the MHC-II antigen presentation pathway, causing degradation of human leukocyte antigen (HLA)-DR-alpha and -DM-alpha and preventing recognition by CD4(+) T cells. We investigated the effects of seven of the US2 to US11 glycoproteins on the MHC-II pathway. Each of the glycoproteins was expressed by using replication-defective adenovirus vectors. In addition to US2, US3 inhibited recognition of antigen by CD4(+) T cells by a novel mechanism. US3 bound to class II alpha/beta complexes in the endoplasmic reticulum (ER), reducing their association with Ii. Class II molecules moved normally from the ER to the Golgi apparatus in US3-expressing cells but were not sorted efficiently to the class II loading compartment. As a consequence, formation of peptide-loaded class II complexes was reduced. We concluded that US3 and US2 can collaborate to inhibit class II-mediated presentation of endogenous HCMV antigens to CD4(+) T cells, allowing virus-infected cells to resist recognition by CD4(+) T cells.  相似文献   

16.
Evasion of the complement system by microorganisms is an essential event in the establishment of infection. In the case of Trypanosoma cruzi, the causative agent of Chagas disease, resistance to complement-mediated lysis is a developmentally regulated characteristic. Infectious trypomastigotes are resistant to complement-mediated lysis in the absence of immune antibodies, whereas the insect forms (epimastigotes) are sensitive to lysis via the alternative complement pathway. We have purified a developmentally regulated, trypomastigote glycoprotein, gp160, and shown that it has complement regulatory activity. The T. cruzi gp160 restricts complement activation by binding the complement component C3b and inhibiting C3 convertase formation. The protein is anchored in the parasite membrane via a glycosyl phosphatidylinositol linkage, similar to the human complement regulatory protein, decay-accelerating factor. Using anti-gp160 antibodies we have isolated a bacteriophage lgt11 clone expressing a portion of the gp160 gene that shares significant DNA sequence homology with the human DAF gene. These results provide functional, biochemical, and genetic evidence that the T. cruzi gp160 is a member of the C3/C4 binding family of complement regulatory proteins, and that gp160 may provide the infectious trypomastigotes with a means of evading the destructive effects of complement.  相似文献   

17.
Human cytomegalovirus (HCMV) expresses a large number of membrane proteins with unknown functions. One class of these membrane proteins apparently acts to allow HCMV to escape detection by the immune system. The best characterized of these are the glycoproteins encoded within the US2 to US11 region of the HCMV genome that mediate resistance to CD8(+) and CD4(+) T cells. US2, US3, US6, and US11 block various aspects of the major histocompatibility complex (MHC) class I and class II antigen presentation pathways, functioning in cytoplasmic membranes to cause retention, degradation, or mislocalization of MHC proteins. Distantly homologous genes in this region, US7, US8, US9, and US10, are not well characterized. Here, we report expression of the glycoproteins encoded by US7 to US10 by using replication-defective adenovirus (Ad) vectors. US7, US9, and US10 remained sensitive to endoglycosidase H and were exclusively or largely present in the endoplasmic reticulum (ER) as determined by confocal microscopy. US8 reached the Golgi apparatus and trans-Golgi network and was more quickly degraded. Previous studies suggested that US9 could localize to cell junctions and mediate cell-to-cell spread in ARPE-19 retinal epithelial cells. We found no evidence of US9 at cell junctions of HEC-1A epithelial cells. HCMV recombinants lacking US9 produced smaller plaques on ARPE-19 cell monolayers but also exhibited defects in virus replication compared with wild-type HCMV in these cells. Other HCMV recombinants constructed in a similar fashion that were able to express US9 also produced small plaques and some of these exhibited defects in production of infectious progeny in ARPE-19 cells. Thus, there was no correlation between defects in cell-to-cell spread (plaque size) and loss of expression of US9, and it is possible that US9(-) mutants produce smaller plaques because they produce fewer progeny. Together, our results do not support the hypothesis that US9 plays a direct role in HCMV cell-to-cell spread.  相似文献   

18.
NK cells play a critical role in the rejection of xenografts. In this study, we report on an investigation of the effect of complement regulatory protein, a decay accelerating factor (DAF: CD55), in particular, on NK cell-mediated cytolysis. Amelioration of human NK cell-mediated pig endothelial cell (PEC) and pig fibroblast cell lyses by various deletion mutants and point substitutions of DAF was tested, and compared with their complement regulatory function. Although wild-type DAF and the delta-short consensus repeat (SCR) 1-DAF showed clear inhibition of both complement-mediated and NK-mediated PEC lyses, delta-SCR2-DAF and delta-SCR3-DAF failed to suppress either process. However, delta-SCR4-DAF showed a clear complement regulatory effect, but had no effect on NK cells. Conversely, the point substitution of DAF (L147 x F148 to SS and KKK(125-127) to TTT) was half down-regulated in complement inhibitory function, but the inhibition of NK-mediated PEC lysis remained unchanged. Other complement regulatory proteins, such as the cell membrane-bound form factor H, fH-PI, and C1-inactivator, C1-INH-PI, and CD59 were also assessed, but no suppressive effect on NK cell-mediated PEC lysis was found. These data suggest, for DAF to function on NK cells, SCR2-4 is required but no relation to its complement regulatory function exists.  相似文献   

19.
A highly attractive approach to investigate the influence and hierarchical organization of viral proteins on cellular immune responses is to employ mutant viruses carrying deletions of various virus-encoded, immune-modulating genes. Here, we introduce a novel set of deletion mutants of the human CMV (HCMV) lacking the UL40 region either alone or on the background of a deletion mutant devoid of the entire US2-11 region. Deletion of UL40 had no significant effect on lysis of infected cells by NK cells, indicating that the expected enhancement of HLA-E expression by specific peptides derived from HCMV-encoded gpUL40 leader sequences was insufficient to confer target cell protection. Moreover, the kinetics of MHC class I down-regulation by US2-11 genes observed at early and late phases postinfection with wild-type virus correlated with increased susceptibility to NK lysis. Thus, the influence of HCMV genes on NK reactivity follows a hierarchy dominated by the US2-11 region, which encodes all viral genes capable of down-modulating expression of classical and non-classical MHC class I molecules. The insights gained from studies of such virus mutants may impact on future therapeutic strategies and vaccine development and incorporate NK cells in the line of defense mechanisms against HCMV infection.  相似文献   

20.

Background

It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy.

Methodology/Principal Findings

Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation.

Conclusions

Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号