首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During mammalian spermatogenesis, the diploid spermatogonia mature into haploid spermatozoa through a highly controlled process of mitosis, meiosis and post-meiotic morphological remodeling (spermiogenesis). Despite important progress made in this area, the molecular mechanisms underpinning this transformation are poorly understood. Our analysis of the expression and function of the putative serine–threonine kinase Fused (Fu) provides critical insight into key steps in spermatogenesis. In this report, we demonstrate that conditional inactivation of Fu in male germ cells results in infertility due to diminished sperm count, abnormal head shaping, decapitation and motility defects of the sperm. Interestingly, mutant flagellar axonemes are intact but exhibit altered periaxonemal structures that affect motility. These data suggest that Fu plays a central role in shaping the sperm head and controlling the organization of the periaxonemal structures in the flagellum. We show that Fu localizes to multiple tubulin-containing or microtubule-organizing structures, including the manchette and the acrosome–acroplaxome complex that are involved in spermatid head shaping. In addition, Fu interacts with the outer dense fiber protein Odf1, a major component of the periaxonemal structures in the sperm flagellum, and Kif27, which is detected in the manchette. We propose that disrupted Fu function in these structures underlies the head and flagellar defects in Fu-deficient sperm. Since a majority of human male infertility syndromes stem from reduced sperm motility and structural defects, uncovering Fu?s role in spermiogenesis provides new insight into the causes of sterility and the biology of reproduction.  相似文献   

2.
The testicular, spermatogenesis and sperm morphology of the backswimmer Martarega bentoi was described using light and transmission electron microscopy. In this species, a pair of testes, two deferent ducts, two different pairs of accessory glands, and an ejaculatory duct form the male reproductive system. Each testis consists of two testicular follicles, which are arranged side by side in snail shape. The follicles are filled with cysts at different stages of spermatogenesis, but in the same cyst the germ cells (up to 64) are in the same stage. At the end of spermatogenesis, the sperm cells are very long, with the flagellum measuring approximately 2500 μm in length, the nucleus only 19 μm, and the acrosome, with two distinct regions, 300 μm. The flagellum is composed of an axoneme, with a 9 + 9 + 2 microtubular pattern, and 2 asymmetric mitochondrial derivatives (MDs). These have the anterior ends inserted into two cavities at the nucleus base, exhibit two paracrystalline inclusions, and have bridges linking them to the axoneme. Few spermatozoa per cyst, asymmetry in size and shape of the MDs, as well as their insertion at the nuclear base are characteristics considered derived, and that differentiate the sperm of M. bentoi from those of the Nepomorpha, Belostomatidae and Nepidae.  相似文献   

3.
Research on in vitro spermatogenesis is important for elucidating the spermatogenic mechanism. We previously developed an organ culture method which can support spermatogenesis from spermatogonial stem cells up to sperm formation using immature mouse testis tissues. In this study, we examined whether it is also applicable to mature testis tissues of adult mice. We used two lines of transgenic mice, Acrosin-GFP and Gsg2-GFP, which carry the marker GFP gene specific for meiotic and haploid cells, respectively. Testis tissue fragments of adult GFP mice, aged from 4 to 29 weeks old, which express GFP at full extension, were cultured in medium supplemented with 10% KSR or AlbuMAX. GFP expression decreased rapidly and became the lowest at 7 to 14 days of culture, but then slightly increased during the following culture period. This increase reflected de novo spermatogenesis, confirmed by BrdU labeling in spermatocytes and spermatids. We also used vitamin A-deficient mice, whose testes contain only spermatogonia. The testes of those mice at 13-21 weeks old, showing no GFP expression at explantation, gained GFP expression during culturing, and spermatogenesis was confirmed histologically. In addition, the adult testis tissues of Sl/Sld mutant mice, which lack spermatogenesis due to Kit ligand mutation, were cultured with recombinant Kit ligand to induce spermatogenesis up to haploid formation. Although the efficiency of spermatogenesis was lower than that of pup, present results showed that the organ culture method is effective for the culturing of mature adult mouse testis tissue, demonstrated by the induction of spermatogenesis from spermatogonia to haploid cells.  相似文献   

4.
Sperm deliver the male complement of DNA to the ovum, and thus play a key role in sexual reproduction. Accordingly, spermatogenesis has outstanding significance in fields as disparate as infertility treatments and pest-control, making it a broadly interesting and important focus for molecular genetics research in a wide range of species. Here we investigate spermatogenesis in the model lepidopteran insect Bombyx mori (silkworm moth), with particular focus on the gene PMFBP1 (polyamine modulated factor 1 binding protein 1). In humans and mouse, PMFBP1 is essential for spermatogenesis, and mutations of this gene are associated with acephalic spermatozoa, which cause infertility. We identified a B. mori gene labeled as “PMFBP1” in GenBank’s RefSeq database and sought to assess its role in spermatogenesis. Like in mammals, the silkworm version of this gene (BmPMFBP1) is specifically expressed in testes. We subsequently generated BmPMFBP1 mutants using a transgenic CRISPR/Cas9 system. Mutant males were sterile while the fertility of mutant females was comparable to wildtype females. In B. mori, spermatogenesis yields two types of sperm, the nucleated fertile eupyrene sperm, and anucleated unfertile apyrene sperm. Mutant males produced abnormal eupyrene sperm bundles but normal apyrene sperm bundles. For eupyrene sperm, nuclei were mislocated and disordered inside the bundles. We also found the BmPMFBP1 deficiency blocked the release of eupyrene sperm bundles from testes to ejaculatory seminalis. We found no obvious abnormalities in the production of apyrene sperm in mutant males, and double-matings with apyrene-deficient sex-lethal mutants rescued the ΔBmPMFBP1 infertility phenotype. These results indicate BmPMFBP1 functions only in eupyrene spermatogenesis, and highlight that distinct genes underlie the development of the two sperm morphs commonly found in Lepidoptera. Bioinformatic analyses suggest PMFBP1 may have evolved independently in lepidoptera and mammals, and that despite the shared name, are likely not homologous genes.  相似文献   

5.
Xie F  Conti M 《Developmental biology》2004,265(1):196-206
To gain insight into the mechanisms of cAMP signaling in germ cells, the expression and subcellular localization of the full-length form of the soluble adenylyl cyclase (sAC) was investigated during rat spermatogenesis and in spermatozoa. A full-length sAC-specific antibody was generated by using a glutathione S-transferase (GST)-sAC carboxyl-terminal region (1399aa-1608aa) fusion protein as the antigen. The selectivity of the purified antibody was confirmed by immunoblotting with lysates from HEK293 cells overexpressing full-length sAC or truncated sAC. Western blot analysis demonstrated that full-length sAC protein appeared on day 25 during testis development. The expression levels increased progressively on days 30 and 35 and remained elevated in adult testis. Full-length sAC protein is retained in spermatozoa from the cauda epididymis. Consistent with the timing of the appearance of the Western blot signal, immunohistochemistry with testis sections at different stages of development detected sAC in late pachytene spermatocytes as well as round and elongating spermatids. Further experiments on the subcellular localization of native or recombinant enzymes revealed that full-length sAC is not only recovered in soluble fractions but also in particulate fractions of testis extracts. Immunofluorescence detection showed localization of the protein in the cytoplasm as well as in organelles of pachytene spermatocytes and spermatids. These findings indicate that cAMP production in spermatids and spermatozoa may occur at sites other than the plasma membrane and suggest that full-length sAC may play a role during spermatid differentiation.  相似文献   

6.
Spermatic characteristics were studied in 10 species representing several distinct groups within the catfish family Doradidae. Interestingly, different types of spermatogenesis, spermiogenesis and spermatozoa are correlated with intrafamilial groups previously proposed for Doradidae. Semi-cystic spermatogenesis, modified Type III spermiogenesis, and biflagellate sperm appear to be unique within Doradidae to the subfamily Astrodoradinae. Other doradid species have sperm with a single flagellum, cystic spermatogenesis, and spermiogenesis of Type I (Pterodoras granulosus, Rhinodoras dorbignyi), Type I modified (Oxydoras kneri), or Type III (Trachydoras paraguayensis). Doradids have an external mode of fertilization, and share a few spermatic characteristics, such as cystic spermatogenesis, Type I spermiogenesis and uniflagellate sperm, with its sister group Auchenipteridae, a family exhibiting sperm modifications associated with insemination and internal fertilization. Semi-cystic spermatogenesis and biflagellate spermatozoa are also found in Aspredinidae, and corroborate recent proposals that Aspredinidae and Doradoidea (Doradidae + Auchenipteridae) are sister groups and that Astrodoradinae occupies a basal position within Doradidae. The co-occurrence in various catfish families of semi-cystic spermatogenesis and either biflagellate spermatozoa (Aspredinidae, Cetopsidae, Doradidae, Malapturidae, Nematogenyidae) or uniflagellate sperm with two axonemes (Ariidae) reinforces the suggestion that such characteristics are correlated. Semi-cystic spermatogenesis and biflagellate sperm may represent ancestral conditions for Loricarioidei and Siluroidei of Siluriformes as they occur in putatively basal members of each suborder, Nematogenyidae and Cetopsidae, respectively. However, if semi-cystic spermatogenesis and biflagellate sperm are ancestral for Siluriformes, cystic spermatogenesis and uniflagellate sperm have arisen independently in multiple lineages including Diplomystidae, sister group to Siluroidei.  相似文献   

7.
Mammalian spermatogenesis comprises three successive phases: mitosis phase, meiosis phase, and spermiogenesis. During spermiogenesis, round spermatid undergoes dramatic morphogenesis to give rise to mature spermatozoon, including the condensation and elongation of nucleus, development of acrosome, formation of flagellum, and removal of excessive cytoplasm. Although these transformations are well defined at the morphological level, the mechanisms underlying these intricate processes are largely unknown. Here, we report that Iqcg, which was previously characterized to be involved in a chromosome translocation of human leukemia, is highly expressed in the spermatogenesis of mice and localized to the manchette in developing spermatids. Iqcg knockout causes male infertility, due to severe defects of spermiogenesis and resultant total immobility of spermatozoa. The axoneme in the Iqcg knockout sperm flagellum is disorganized and hardly any typical (“9+2”) pattern of microtubule arrangement could be found in Iqcg knockout spermatids. Iqcg interacts with calmodulin in a calcium dependent manner in the testis, suggesting that Iqcg may play a role through calcium signaling. Furthermore, cilia structures in the trachea and oviduct, as well as histological appearances of other major tissues, remain unchanged in the Iqcg knockout mice, suggesting that Iqcg is specifically required for spermiogenesis in mammals. These results might also provide new insights into the genetic causes of human infertility.  相似文献   

8.
Spermatogenesis is a costly process that is expected to be under selection to maximise sperm quantity and quality. Testis size is often regarded as a proxy measure of sperm investment, implicitly overlooking the quantitative assessment of spermatogenesis. An enhanced understanding of testicular function, beyond testis size, may reveal further sexual traits involved in sperm quantity and quality. Here, we first estimated the inter-male variation in testicular function and sperm traits in red deer across the breeding and non-breeding seasons. Then, we analysed the relationships between the testis mass, eight parameters of spermatogenic function, and seven parameters of sperm quality. Our findings revealed that the Sertoli cell number and function parameters vary greatly between red deer males, and that spermatogenic activity co-varies with testis mass and sperm quality across the breeding and non-breeding seasons. For the first time in a seasonal breeder, we found that not only is the Sertoli cell number important in determining testis mass (r = 0.619, p = 0.007 and r = 0.248, p = 0.047 for the Sertoli cell number assessed by histology and cytology, respectively), but also sperm function (r = 0.703, p = 0.002 and r = 0.328, p = 0.012 for the Sertoli cell number assessed by histology and cytology, respectively). Testicular histology also revealed that a high Sertoli cell number per tubular cross-section is associated with high sperm production (r = 0.600, p = 0.009). Sperm production and function were also positively correlated (r = 0.384, p = 0.004), suggesting that these traits co-vary to maximise sperm fertilisation ability in red deer. In conclusion, our findings contribute to the understanding of the dynamics of spermatogenesis, and reveal new insights into the role of testicular function and the Sertoli cell number on testis size and sperm quality in red deer.  相似文献   

9.
Germ cell transplantation was developed by Dr. Ralph Brinster and colleagues at the University of Pennsylvania in 19941,2. These ground-breaking studies showed that microinjection of germ cells from fertile donor mice into the seminiferous tubules of infertile recipient mice results in donor-derived spermatogenesis and sperm production by the recipient animal2. The use of donor males carrying the bacterial β-galactosidase gene allowed identification of donor-derived spermatogenesis and transmission of the donor haplotype to the offspring by recipient animals1. Surprisingly, after transplantation into the lumen of the seminiferous tubules, transplanted germ cells were able to move from the luminal compartment to the basement membrane where spermatogonia are located3. It is generally accepted that only SSCs are able to colonize the niche and re-establish spermatogenesis in the recipient testis. Therefore, germ cell transplantation provides a functional approach to study the stem cell niche in the testis and to characterize putative spermatogonial stem cells. To date, germ cell transplantation is used to elucidate basic stem cell biology, to produce transgenic animals through genetic manipulation of germ cells prior to transplantation4,5, to study Sertoli cell-germ cell interaction6,7, SSC homing and colonization3,8, as well as SSC self-renewal and differentiation9,10.Germ cell transplantation is also feasible in large species11. In these, the main applications are preservation of fertility, dissemination of elite genetics in animal populations, and generation of transgenic animals as the study of spermatogenesis and SSC biology with this technique is logistically more difficult and expensive than in rodents. Transplantation of germ cells from large species into the seminiferous tubules of mice results in colonization of donor cells and spermatogonial expansion, but not in their full differentiation presumably due to incompatibility of the recipient somatic cell compartment with the germ cells from phylogenetically distant species12. An alternative approach is transplantation of germ cells from large species together with their surrounding somatic compartment. We first reported in 2002, that small fragments of testis tissue from immature males transplanted under the dorsal skin of immunodeficient mice are able to survive and undergo full development with the production of fertilization competent sperm13. Since then testis tissue xenografting has been shown to be successful in many species and emerged as a valuable alternative to study testis development and spermatogenesis of large animals in mice14.  相似文献   

10.
Lethal mutations in the 0.5 map unit region between dpy-5 and bli-4 on chromosome I in Caenorhabditis elegans were serially rescued using cosmid-containing transgenic strains. All the lethal mutations analyzed came from a set of 495 EMS-induced, sDp2-rescued lethals described previously. Germline transformation with cosmid DNA was used to create 25 transgenic strains bearing heritable extrachromosomal arrays. These arrays were used as small duplications for the fine-scale mapping of essential genes, via the rescue of lethal mutations. Lethal mutations in 13 essential genes have been phenotypically rescued, allowing the alignment of the genetic and physical maps in this region. Extrachromosomal arrays were found to be transmitted 2- to 7-fold less frequently in oocytes than in hermaphrodite sperm for 12 of the 16 arrays that were examined. Three of these strains showed a subsequent 4- to 13-fold increase in array stability in oocytes. This phenomenon may be influenced by cosmid sequences. Early mitotic loss of the arrays was observed in all 17 transgenic strains examined, suggesting that loss of the array can occur at any time during development when cell divisions are occurring. As a result of this work, 13 of the essential loci positioned between dpy-5 and bli-4 are anchored to the physical map, thereby providing links between the physical and genetic maps on average every 85 kb.  相似文献   

11.
Testis of Hemidactylus flaviviridis, commonly known as Indian wall lizard, displays a lack of cellular and metabolic activity in regressed phase of testis during non-breeding season of the year. Retracted Sertoli cells (Sc), fibroid myoid cells and pre-meiotic resting spermatogonia are observed in such testis. This situation is akin to certain forms of infertility in men where hormone supplementation fails to generate sperm despite the presence of Sc and germ cells (Gc) in testis. In testis of lizard, spermatogenesis is reinitiated upon increased level of hormones during appropriate season (phase of recrudescence). Study of genes associated with generation of sperm, from regressed adult testis in lizard, may provide valuable information for understanding certain forms of male idiopathic infertility. Subtractive hybridization using testicular RNA obtained from the regressed and active phases of lizard reproductive cycle led to identify eight partial mRNA sequences that showed sequence homology with mice genes. We further evaluated the gene expression prolife by real-time PCR in three different reproductive phases of H. flaviviridis: regressed (pre-meiotic), recrudescent (meiotic) and active (post meiotic), for comparison with the corresponding testicular phases found in testis of 5 days (pre-meiotic), 20 days (meiotic) and 60 days (post-meiotic) old mouse. This is the first report where genes associated with progression of spermatogenesis during active phase, which follows a regressed state of adult testis, were identified in lizard and found to be conserved in mouse. Six important genes, Hk1, Nme5, Akap4, Arih1, Rassf7 and Tubb4b were found to be strictly associated with active spermatogenesis in both mouse and lizard. Factors interfering with the expression of any of these genes may potentially abrogate the process of spermatogenesis leading to infertility. Such information may shed light on unknown causes of idiopathic male infertility.  相似文献   

12.
Transplantation of germ cells from fertile donor mice to the testes of infertile recipient mice results in donor-derived spermatogenesis and transmission of the donor's genetic material to the offspring of recipient animals. Germ cell transplantation provides a bioassay to study the biology of male germ line stem cells, develop systems to isolate and culture spermatogonial stem cells, examine defects in spermatogenesis and treat male infertility. Although most widely studied in rodents, germ cell transplantation has been applied to larger mammals. In domestic animals including pigs, goats and cattle, as well as in primates, germ cells can be transplanted to a recipient testis by ultrasonographic-guided cannulation of the rete testis. Germ cell transplantation was successful between unrelated, immuno-competent pigs and goats, whereas transplantation in rodents requires syngeneic or immuno-compromised recipients. Genetic manipulation of isolated germ line stem cells and subsequent transplantation will result in the production of transgenic sperm. Transgenesis through the male germ line has tremendous potential in domestic animal species where embryonic stem cell technology is not available and current options to generate transgenic animals are inefficient. As an alternative to transplantation of isolated germ cells to a recipient testis, ectopic grafting of testis tissue from diverse mammalian donor species, including horses and primates, into a mouse host represents a novel possibility to study spermatogenesis, to investigate the effects of drugs with the potential to enhance or suppress male fertility, and to produce fertile sperm from immature donors. Therefore, transplantation of germ cells or xenografting of testis tissue are uniquely valuable approaches for the study, preservation and manipulation of male fertility in domestic animals.  相似文献   

13.
14.
Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.  相似文献   

15.
The testis expresses a variety of cadherin superfamily members including classic cadherins and protocadherins. This report describes the first localization of a protocadherin protein in testis and sperm. After cloning rat cDNAs for protocadherin alpha3 and alpha4, isoform-specific polyclonal antibodies were generated against protocadherin alpha3. Western blotting of rat testis showed that protocadherin alpha3 was solubilized completely by Triton X-100, in contrast to the adhesion junction components N-cadherin, beta-catenin, and p120 catenin. Corroborating this data, protocadherin alpha3 was immunolocalized to the spermatid acrosomal area, intercellular bridge, and flagellum, but not classic cadherin-based adhesion junctions. Acrosome-associated protocadherin alpha3 was first detected at step 8 of spermiogenesis, and this association remained on cauda epididymal sperm. Acrosome immunostaining was reduced, but present, in acrosome-reacted sperm. Spermatid intercellular bridges became positive for protocadherin alpha3 coincident with the appearance of plectin, occurring at spermiogenic steps 8 to 9, and elongate spermatid bridges remained positive throughout spermatogenesis. The developing flagellum was uniformly immunostained for protocadherin alpha3 up to approximately spermiogenic step 17. Subsequently, flagellar immunostaining was confined to the principal piece, and this pattern continued in cauda epididymal sperm. These data show that protocadherin alpha3 performs functions unique from classic cadherins in spermatogenesis and suggest a role for protocadherin alpha3 in organizing germ cell-specific structures including the intercellular bridge, flagellum, and acrosome.  相似文献   

16.
Meichroacidin (MCA) is a highly hydrophilic protein that contains the membrane occupation and recognition nexus motif. MCA is expressed during the stages of spermatogenesis from pachytene spermatocytes to mature sperm development and is localized in the male meiotic metaphase chromosome and sperm flagellum. MCA sequences are highly conserved in Ciona intestinalis, Cyprinus carpio, and mammals. To investigate the physiological role of MCA, we generated MCA-disrupted mutant mice; homozygous MCA mutant males were infertile, but females were not. Sperm was rarely observed in the caput epididymidis of MCA mutant males. However, little to no difference was seen in testis mass between wild-type and mutant mice. During sperm morphogenesis, elongated spermatids had retarded flagellum formation and might increase phagocytosis by Sertoli cells. Immunohistochemical analysis revealed that MCA interacts with proteins located on the outer dense fibers of the flagellum. The testicular sperm of MCA mutant mice was capable of fertilizing eggs successfully via intracytoplasmic sperm injection and generated healthy progeny. Our results suggest that MCA is essential for sperm flagellum formation and the production of functional sperm.  相似文献   

17.
Due to the scarcity of information about patterns of spermatogenesis in bats, this study aimed to provide information on the testicular activity of the bat Sturnira lilium along the annual seasons. Thus, a series of morphometrical and stereological analyses were made using the testes of adult S. lilium in order to achieve a better understanding of the sperm production dynamics. Light and transmission electron microscopy analyses were performed in testicular fragments of animals captured during dry and rainy seasons. The testes followed the pattern of organization described for other mammals, and there were no morphological differences between organs collected either in dry or in rainy seasons. Each tubular cross-section in stage 1 was made of 0.5 type-A spermatogonia, 4.4 primary spermatocytes in preleptotene/leptotene, 3.7 in zygotene, 11.9 in pachytene, 35.6 round spermatids and 8.5 Sertoli cells. The mitotic and meiotic indexes were 15.4 and 2.9 cells, respectively, while the spermatogenesis yield was 68.7 cells. The testicular sperm reserves was 37.61×106 cells, and daily sperm production per gram of testis averaged 209.68×106 cells, both highest averages occurring in the rainy season. S. lilium male bats have a continuous reproductive pattern, high spermatogenesis yield and low support capacity by the Sertoli cells.  相似文献   

18.
The ultrastructure of spermatogenesis and spermatozoa was studied in Timema poppensis Vickery & Sandoval, 1999, a putative basal taxon of Phasmatodea. The apical portion of testis follicles consists of spermatogonial cells with polymorphic nuclei. Primary spermatocytes display very short primary cilia originating from the peripheral centrosomes. Early spermatids develop a conspicuous “nebenkern” consisting of fused mitochondria. They have a single peripheral centriole with microtubular triplets, which expresses a 3.6-μm-long cilium featuring a 9?+?2 axonemal pattern. In a later stage, the centriole and the ciliary shaft displace toward the inner part of the cytoplasm by an infolding of the plasma membrane. Mature spermatids exhibit a derived centriole with microtubule doublets devoid of dynein arms, which is equipped with a dense arc-like outer structure. Ciliary degeneration was not observed during spermiogenesis. Spermatozoa are short flagellate cells about 55–60?μm in length. They are characterized by a three-layered acrosomal complex. The distinctive bell-shaped morphology of the acrosome vesicle is likely an autapomorphic trait of Timema. The flagellum has a 9?+?9?+?2 axoneme, two accessory bodies, two flattened cisterns, and two elongated mitochondrial derivatives. Results support the hypothesis that Phasmatodea, comprising Timema?+?Euphasmatodea, form a monophyletic group. The presence of 17 protofilaments in the wall of accessory microtubules and the flattened configuration of the flagellum are potential apomorphic groundplan features of the order. Within Phasmatodea, a key evolutionary divergence was from the conventional insect spermiogenesis and sperm structure of Timema, to the unusual spermiogenetic process and peculiar sperm structure of Euphasmatodea. As a result, Timema retains more sperm character states found in the polyneopteran ground pattern, while Euphasmatodea have evolved outstanding sperm autapomorphies, like the loss of mitochondria and flattened cisterns, and the presence of strongly expanded accessory bodies.  相似文献   

19.
In vitro male germ cell cultures of zebrafish   总被引:1,自引:0,他引:1  
Transgenic modification of sperm before fertilization has the advantages of a much shorter timeline for the production of transgenic animals. A culture system using primary cultures of zebrafish male germ cells, in which the differentiation of spermatogonia to functional sperm can occur in vitro, allows us to introduce foreign DNA into the cultured sperm and to produce transgenics from the sperm. This chapter describes methods for the co-culture of male germ cells and a Sertoli cell feeder layer and the introduction of foreign DNA with retroviruses. This male germ cell culture system should prove useful not only in producing genetically modified sperm, but also in analyzing the regulatory function of Sertoli cells for spermatogenesis in vertebrates.  相似文献   

20.
Inactivation of the hormone-sensitive lipase gene (HSL) confers male sterility with a major defect in spermatogenesis. Several forms of HSL are expressed in testis. HSLtes mRNA and protein are found in early and elongated spermatids, respectively. The other forms are expressed in diploid germ cells and interstitial cells of the testis. To determine whether the absence of the testis-specific form of HSL, HSLtes, was responsible for the infertility in HSL-null mice, we generated transgenic mice expressing HSLtes under the control of its own promoter. The transgenic animals were crossed with HSL-null mice to produce mice deficient in HSL in nongonadal tissues but expressing HSLtes in haploid germ cells. Cholesteryl ester hydrolase activity was almost completely blunted in HSL-deficient testis. Mice with one allele of the transgene showed an increase in enzymatic activity and a small elevation in the production of spermatozoa. The few fertile hemizygous male mice produced litters of very small to small size. The presence of the two alleles led to a doubling in cholesteryl ester hydrolase activity, which represented 25% of the wild type values associated with a qualitatively normal spermatogenesis and a partial restoration of sperm reserves. The fertility of these mice was totally restored with normal litter sizes. In line with the importance of the esterase activity, HSLtes transgene expression reversed the cholesteryl ester accumulation observed in HSL-null mice. Therefore, expression of HSLtes and cognate cholesteryl ester hydrolase activity leads to a rescue of the infertility observed in HSL-deficient male mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号