首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Ampicillin-resistant S. aureus (ARSA) now poses a serious problem for hospitalized patients, and their care providers. Plant-derived antibacterial that can reverse the resistance to well-tried agents which have lost their original effectiveness are the research objectives of far reaching importance. To this aim, the present study investigated antibacterial and synergistic activities of Stephania suberosa extracts (SSE) against ARSA when used singly and in combination with ampicillin.

Results

The majority chemical compounds of SSE were alkaloid (526.27 ± 47.27 mg/1 g of dried extract). The Minimum inhibitory concentration (MICs) for ampicillin and SSE against all ARSA strains were >512 μg/ml and 4 mg/ml, respectively. Checkerboard assay revealed synergistic activity in the combination of ampicillin (0.15 μg/ml) and SSE (2 mg/ml) at fractional inhibitory concentration index (FICI) <0.5. The killing curve assay had confirmed that the viability of ARSA was dramatically reduced from 5x105 cfu/ml to 103 cfu/ml within 6 h after exposure to SSE (2 mg/ml) plus ampicillin (0.15 μg/ml) combination. Electron microscopic study clearly revealed that these ARSA cells treated with this combination caused marked morphological damage, peptidoglycan and cytoplasmic membrane damage, and average cell areas significant smaller than control. Obviously, Immunofluorescence staining and confocal microscopic images confirmed that the peptidoglycan of these cells were undoubtedly disrupted by this combination. Furthermore, the CM permeability of ARSA was also increased by this combination. Enzyme assay demonstrated that SSE had an inhibitory activity against β-lactamase in concentrations manner.

Conclusions

So, these findings provide evidence that SSE has the high potential to reverse bacterial resistance to originate traditional drug susceptibility of it and may relate to three modes of actions of SSE: (1) inhibits peptidoglycan synthesis, resulting in morphological damage, (2) inhibits β-lactamases activity, and (3) increases CM permeability. It is widely recognized that many types of drugs are derived from alkaloids. So, this SSE offers the prominent potential to develop a novel adjunct phytopharmaceutical to ampicillin for the treatment of ARSA. Further active ingredients study, toxicity of it, and the synergistic effect on blood and tissue should be performed and confirmed in an animal test or in humans.  相似文献   

2.
Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldtfm) conveys high-level resistance to β-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldtfm does not confer resistance to β-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify β-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldtfm by formation of a thioester bond between the active-site cysteine and the β-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldtfm inactivation by ampicillin and ceftriaxone. For ampicillin, Ldtfm acylation was followed by rupture of the C5–C6 bond of the β-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldtfm blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the β-lactam scaffold for L,D-transpeptidase-inactivation.  相似文献   

3.
Penicillin-resistant isolates of Streptococcus pneumoniae generally contain mosaic genes encoding the low-affinity penicillin-binding proteins (PBPs) PBP2x, PBP2b, and PBP1a. We now present evidence that PBP2a and PBP1b also appear to be low-affinity variants and are encoded by distinct alleles in β-lactam-resistant transformants of S. pneumoniae obtained with chromosomal donor DNA from a Streptococcus mitis isolate. Different lineages of β-lactam-resistant pneumococcal transformants were analyzed, and transformants with low-affinity variants of all high-molecular-mass PBPs, PBP2x, -2a, -2b, -1a, and -1b, were isolated. The MICs of benzylpenicillin, oxacillin, and cefotaxime for these transformants were up to 40, 100, and 50 μg/ml, respectively, close to the MICs for the S. mitis donor strain. Recruitment of low-affinity PBPs was accompanied by a decrease in cross-linked muropeptides as revealed by high-performance liquid chromatography of muramidase-digested cell walls, but no qualitative changes in muropeptide chemistry were detected. The growth rates of all transformants were identical to that of the parental S. pneumoniae strain. The results stress the potential for the acquisition by S. pneumoniae of high-level β-lactam resistance by interspecies gene transfer.  相似文献   

4.

Purpose

To investigate the efficacy and mechanism of tacrolimus(FK506), which is a novel macrolide immunosuppressant, in inhibiting triggering receptor expressed on myeloid cells-1 (TREM-1) expression in a murine keratitis model induced by Aspergillus fumigatus.

Method

TREM-1 was detected in 11 fungus-infected human corneas by quantitative real-time PCR (qRT-PCR). RAW264.7 macrophages were divided into four groups, which received treatment with zymosan (100 µg/ml), zymosan (100 µg/ml) + mTREM-1/Fc protein (1 µg/ml), or zymosan (100 µg/ml) + FK506 (20 µM) or negative-control treatment. After this treatment, the expression of TREM-1, interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) was assayed using qRT-PCR and ELISA. The mouse model of fungal keratitis was created by intrastromal injection with Aspergillus fumigatus, and the mice were divided into 2 groups: group A received vehicle eye drops 4 times each day, and group B received 4 doses of FK506 eye drops each day. Corneal damage was evaluated by clinical scoring and histologic examination,and myeloperoxidase (MPO) protein levels were also detected by ELISA. The expression of TREM-1, IL-1β and TNFα was then determined at different time points using qRT-PCR and ELISA.

Results

TREM-1 expression dramatically increased in the human corneas with fungal keratitis. In contrast, FK506 reduced the expression of TREM-1, IL-1β and TNFα in RAW264.7 macrophages stimulated with zymosan. In the mouse model, at day 1 post-infection, the corneal score of the FK506-treated group was lower than that of the control, and polymorphonuclear neutrophil (PMN) infiltration was diminished. TREM-1, IL-1β and TNFα expression was significantly reduced at the same time point. However, the statistically significant differences in cytokine expression, clinical scores and infiltration disappeared at 5 days post-infection.

Conclusions

FK506 may inhibit the inflammation induced by fungi and alleviate the severity of corneal damage at an early stage of fungal keratitis by downregulating TREM-1 expression.  相似文献   

5.
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen which causes a variety of respiratory infections. The objectives of the study were to determine its antimicrobial susceptibility, to characterize the β-lactam resistance, and to establish a genetic characterization of NTHi isolates. Ninety-five NTHi isolates were analyzed by pulsed field gel electrophoresis (PFGE) and multi locus sequence typing (MLST). Antimicrobial susceptibility was determined by microdilution, and the ftsI gene (encoding penicillin-binding protein 3, PBP3) was PCR amplified and sequenced. Thirty (31.6%) isolates were non-susceptible to ampicillin (MIC≥2 mg/L), with 10 of them producing β-lactamase type TEM-1 as a resistance mechanism. After ftsI sequencing, 39 (41.1%) isolates showed amino acid substitutions in PBP3, with Asn526→ Lys being the most common (69.2%). Eighty-four patients were successfully treated with amoxicillin/clavulanic acid, ceftriaxone and levofloxacin. Eight patients died due either to aspiration or complication of their comorbidities. In conclusion, NTHi causing CAP in adults shows high genetic diversity and is associated with a high rate of reduced susceptibility to ampicillin due to alterations in PBP3. The analysis of treatment and outcomes demonstrated that NTHi strains with mutations in the ftsI gene could be successfully treated with ceftriaxone or fluoroquinolones.  相似文献   

6.
Genetically related Mycobacterium tuberculosis strains with alterations at codon 516 in the rpoB gene were observed amongst a substantial number of patients with drug resistant tuberculosis in the Eastern Cape Province (ECP) of South Africa. Mutations at codon 516 are usually associated with lower level rifampicin (RIF) resistance, while susceptibility to rifabutin (RFB) remains intact. This study was conducted to assess the rationale for using RFB as a substitution for RIF in the treatment of MDR and XDR tuberculosis outbreaks. Minimum inhibitory concentrations (MICs) of 34 drug resistant clinical isolates of M tuberculosis were determined by MGIT 960 and correlated with rpoB mutations. RFB MICs ranged from 0.125 to 0.25 µg/ml in the 34 test isolates thereby confirming phenotypic susceptibility as per critical concentration (CC) of 0.5 µg/ml. The corresponding RIF MICs ranged between 5 and 15 µg/ml, which is well above the CC of 1.0 µg/ml. Molecular-based drug susceptibility testing provides important pharmacogenetic insight by demonstrating a direct correlation between defined rpoB mutation and the level of RFB susceptibility. We suggest that isolates with marginally reduced susceptibility as compared to the epidemiological cut-off for wild-type strains (0.064 µg/ml), but lower than the current CC (≤0.5 µg/ml), are categorised as intermediate. Two breakpoints (0.064 µg/ml and 0.5 µg/ml) are recommended to distinguish between susceptible, intermediate and RFB resistant strains. This concept may assist clinicians and policy makers to make objective therapeutic decisions, especially in situations where therapeutic options are limited. The use of RFB in the ECP may improve therapeutic success and consequently minimise the risk of ongoing transmission of drug resistant M. tuberculosis strains.  相似文献   

7.
Development of vitamin A-rich cereals can help in alleviating the widespread problem of vitamin A deficiency. We report here significant enhancement of kernel β-carotene in elite maize genotypes through accelerated marker-assisted backcross breeding. A favourable allele (543 bp) of the β-carotene hydroxylase (crtRB1) gene was introgressed in the seven elite inbred parents, which were low (1.4 µg/g) in kernel β-carotene, by using a crtRB1-specific DNA marker for foreground selection. About 90% of the recurrent parent genome was recovered in the selected progenies within two backcross generations. Concentration of β-carotene among the crtRB1-introgressed inbreds varied from 8.6 to 17.5 µg/g - a maximum increase up to 12.6-fold over recurrent parent. The reconstituted hybrids developed from improved parental inbreds also showed enhanced kernel β-carotene as high as 21.7 µg/g, compared to 2.6 µg/g in the original hybrid. The reconstituted hybrids evaluated at two locations possessed similar grain yield to that of original hybrids. These β-carotene enriched high yielding hybrids can be effectively utilized in the maize biofortification programs across the globe.  相似文献   

8.

Background

The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging capacity of bioactive metabolites present in Newbouldia laevis leaf extract.

Results

Chromatographic and spectrophotometric methods were used in the study and modified where necessary in the study. Bioactivity of the extract was determined at 10 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml and 400 μg/ml concentrations expressed in % inhibition. The yield of the ethanolic leaf extract of N.laevis was 30.3 g (9.93%). Evaluation of bioactive metabolic constituents gave high levels of ascorbic acid (515.53 ± 12 IU/100 g [25.7 mg/100 g]), vitamin E (26.46 ± 1.08 IU/100 g), saponins (6.2 ± 0.10), alkaloids (2.20 ± 0.03), cardiac glycosides(1.48 ± 0.22), amino acids and steroids (8.01 ± 0.04) measured in mg/100 g dry weight; moderate levels of vitamin A (188.28 ± 6.19 IU/100 g), tannins (0.09 ± 0.30), terpenoids (3.42 ± 0.67); low level of flavonoids (1.01 ± 0.34 mg/100 g) and absence of cyanogenic glycosides, carboxylic acids and aldehydes/ketones. The extracts percentage inhibition of DPPH, hydroxyl radical (OH.), superoxide anion (O2.-), iron chelating, nitric oxide radical (NO), peroxynitrite (ONOO), singlet oxygen (1O2), hypochlorous acid (HOCl), lipid peroxidation (LPO) and FRAP showed a concentration-dependent antioxidant activity with no significant difference with the controls. Though, IC50 of the extract showed significant difference only in singlet oxygen (1O2) and iron chelating activity when compared with the controls.

Conclusions

The extract is a potential source of antioxidants/free radical scavengers having important metabolites which maybe linked to its ethno-medicinal use.  相似文献   

9.

Objectives

Target-controlled infusion (TCI) provides precise pharmacokinetic control of propofol concentration in the effect-site (Ce), eg. brain. This pilot study aims to evaluate the feasibility and optimal TCI regimen for flexible bronchoscopy (FB) sedation.

Methods

After alfentanil bolus, initial induction Ce of propofol was targeted at 2 μg/ml. Patients were randomized into three titration groups (i.e., by 0.5, 0.2 and 0.1 μg/ml, respectively) to maintain stable sedation levels and vital signs. Adverse events, frequency of adjustments, drug doses, and induction and recovery times were recorded.

Results

The study was closed early due to significantly severe hypoxemia events (oxyhemoglobin saturation <70%) in the group titrated at 0.5 μg/ml. Forty-nine, 49 and 46 patients were enrolled into the 3 respective groups before study closure. The proportion of patients with hypoxemia events differed significantly between groups (67.3 vs. 46.9 vs. 41.3%, p = 0.027). Hypotension events, induction and recovery time and propofol doses were not different. The Ce of induction differed significantly between groups (2.4±0.5 vs. 2.1±0.4 vs. 2.1±0.3 μg/ml, p = 0.005) and the Ce of procedures was higher at 0.5 μg/ml titration (2.4±0.5 vs. 2.1±0.4 vs. 2.2±0.3 μg/ml, p = 0.006). The adjustment frequency tended to be higher for titration at 0.1 μg/ml but was not statistically significant (2 (0∼6) vs. 3 (0∼6) vs. 3 (0∼11)). Subgroup analysis revealed 14% of all patients required no further adjustment during the whole sedation. Comparing patients requiring at least one adjustment with those who did not, they were observed to have a shorter induction time (87.6±34.9 vs. 226.9±147.9 sec, p<0.001), a smaller induction dose and Ce (32.5±4.1 vs. 56.8±22.7 mg, p<0.001; 1.76±0.17 vs. 2.28 ±0.41, p<0.001, respectively), and less hypoxemia and hypotension (15.8 vs.56.9%, p = 0.001; 0 vs. 24.1%, p = 0.008, respectively).

Conclusion

Titration at 0.5 μg/ml is risky for FB sedation. A subgroup of patients required no more TCI adjustment with fewer complications. Further studies are warranted to determine the optimal regimen of TCI for FB sedation.

Trial Registration

ClinicalTrials.gov NCT01101477  相似文献   

10.
Resistance to the extended-spectrum cephalosporin ceftriaxone in the pathogenic bacteria Neisseria gonorrhoeae is conferred by mutations in penicillin-binding protein 2 (PBP2), the lethal target of the antibiotic, but how these mutations exert their effect at the molecular level is unclear. Using solution NMR, X-ray crystallography, and isothermal titration calorimetry, we report that WT PBP2 exchanges dynamically between a low-affinity state with an extended β3–β4 loop conformation and a high-affinity state with an inward β3–β4 loop conformation. Histidine-514, which is located at the boundary of the β4 strand, plays an important role during the exchange between these two conformational states. We also find that mutations present in PBP2 from H041, a ceftriaxone-resistant strain of N. gonorrhoeae, increase resistance to ceftriaxone by destabilizing the inward β3–β4 loop conformation or stabilizing the extended β3–β4 loop conformation to favor the low-affinity drug-binding state. These observations reveal a unique mechanism for ceftriaxone resistance, whereby mutations in PBP2 lower the proportion of target molecules in the high-affinity drug-binding state and thus reduce inhibition at lower drug concentrations.Keywords: PBP2, Neisseria gonorrhoeae, beta-lactam, conformational dynamics, antibiotic resistance

Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea, with nearly 80 million cases worldwide each year (1). Without antibiotic treatment, infections persist as a chronic disease and can cause serious sequelae, including pelvic inflammatory disease, infertility, arthritis, and disseminated infections (2). For many years, N. gonorrhoeae was treated with a single dose of penicillin, and more recently, ceftriaxone. In 2012, the emergence of several high-level ceftriaxone-resistant strains led the Centers for Disease Control and Prevention to change its recommended treatment for gonorrhea from monotherapy to dual therapy with ceftriaxone and azithromycin (3, 4, 5). However, treatment failures have been reported for both agents, and in 2018, a strain with high-level resistance to both ceftriaxone and azithromycin was identified (6, 7). Concern about azithromycin resistance led the Centers for Disease Control and Prevention recently to drop the recommendation of dual therapy in favor of an increased dose (500 mg) of ceftriaxone alone (8). Both penicillin and ceftriaxone inhibit cell wall biosynthesis in N. gonorrhoeae by targeting penicillin-binding protein 2 (PBP2).PBP2 is an essential peptidoglycan transpeptidase (TPase) that crosslinks the peptide chains from adjacent peptidoglycan strands during cell-wall synthesis (9). β-lactam antibiotics, including the extended-spectrum cephalosporin (ESC) ceftriaxone, are analogs of the d-Ala-d-Ala C terminus of the peptidoglycan substrate and as such target PBP2 by binding to and reacting with the active-site serine nucleophile (Ser310 in N. gonorrhoeae PBP2) to form a covalently acylated complex (10, 11). The acylation reaction (Equation 1) proceeds first through formation of a noncovalent complex with the β-lactam (defined by the equilibrium constant, Ks), which is then attacked by the serine nucleophile to form a covalent acyl-enzyme complex (k2). For PBPs, hydrolysis of the acyl-enzyme (k3) is very slow compared with its formation, and the enzyme is essentially irreversibly inactivated. The acylation of PBPs by β-lactam antibiotics is therefore defined by a second-order rate constant, k2/Ks (M−1 s−1), which reflects both the noncovalent binding affinity (Ks) and the first-order acylation rate (k2):E+SKsESk2ESk3E+P(1)The emergence of resistance to penicillin and ceftriaxone in N. gonorrhoeae occurs primarily via the acquisition of mutant alleles of the penA gene encoding PBP2 (12). These alleles are referred to as mosaic because they arise through multiple homologous recombination events with DNA released by commensal Neisseria species. PBP2 from the high-level ceftriaxone-resistant strain, H041, contains 61 mutations compared with PBP2 from the antibiotic-susceptible strain, FA19 (13, 14). Determining how these mutations lower the k2/Ks of ceftriaxone for PBP2 by over 10,000-fold while still preserving essential TPase activity is fundamental for understanding the evolution of antibiotic resistance.Toward this goal, we have identified a subset of these mutations that, when incorporated into the penA gene from FA19, confer ∼80% of the increase in minimum inhibitory concentration for ceftriaxone relative to that of the penA gene from H041 (penA41) (15, 16). We recently reported the structures of apo and ceftriaxone-acylated PBP2 at high resolution and have detailed conformational changes in β3 and the β3–β4 loop involved in antibiotic binding and acylation (17). Intriguingly, although present in the active site region, most of the mutations conferring resistance are not in direct contact with ceftriaxone in the crystal structure of acylated PBP2 (17, 18). We have proposed that these mutations alter the binding and acylation kinetics of PBP2 with ceftriaxone by restricting protein dynamics (18).To understand further the structural and biochemical mechanisms by which these mutations lower the acylation rates of β-lactam antibiotics, we utilized a combination of solution 19F NMR, X-ray crystallography, and biochemical approaches to investigate PBP2. We report that the β3–β4 loop in the TPase domain of WT PBP2, which is known to adopt markedly different conformations in the apo versus acylated crystal structures (17), samples two major conformational states in solution. Substitutions of WT PBP2 residues with mutations in H041 that confer ceftriaxone resistance alter the conformational landscape of PBP2 by destabilizing the high-affinity state containing the inward conformation of the β3–β4 loop and stabilizing a low-affinity conformation containing an extended β3–β4 loop conformation, thereby restricting access to the inward conformation required for high-affinity drug binding. Our combined solution NMR and crystallographic analyses of PBP2 and its preacylation drug complexes further support the notion that mutations in PBP2 from ceftriaxone-resistant strains of N. gonorrhoeae confer antibiotic resistance by hindering conformational changes required to form a productive drug-binding state (18).  相似文献   

11.
In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is mainly periplasmic, with a 23 residues cytoplasmic tail and a single transmembrane helix. We have solved the crystal structure of a soluble form of PBP3 (PBP357–577) at 2.5 Å revealing the two modules of high molecular weight class B PBPs, a carboxy terminal module exhibiting transpeptidase activity and an amino terminal module of unknown function. To gain additional insight, the PBP3 Val88-Ser165 subdomain (PBP388–165), for which the electron density is poorly defined in the PBP3 crystal, was produced and its structure solved by SAD phasing at 2.1 Å. The structure shows a three dimensional domain swapping with a β-strand of one molecule inserted between two strands of the paired molecule, suggesting a possible role in PBP357–577 dimerization.  相似文献   

12.
α-Amylase (EC 3.2.1.1) was excreted by Calvatia gigantea in liquid growth media containing different sources of starch. Among the factors affecting enzyme production in shake flasks were the type and the concentration of starch and the nitrogen source supplied. Optimum cultural conditions for maximum enzyme production were: soluble starch concentration, 5%; inoculum size, 3.75 × 105 conidia per ml; 5-day cultivation time at 28 to 30°C. The observed maximum yield of 81.3 U of saccharifying enzyme activity per ml of growth medium was the highest ever reported in the literature for submerged cultures. Partially purified enzyme functioned optimally at pH 4.5 to 5.5 and 53 to 58°C. The activation energy of enzymic hydrolysis of starch in the range of 20 to 40°C was 8,125 cal/mol (ca. 3.41 × 104 J). The apparent Km value of the enzyme at 25°C was 7.68 × 10−4 g/ml. Some of the properties of the enzyme under investigation were similar to those of α-amylases excreted from molds producing large amounts of the enzyme.  相似文献   

13.

Background

Glycerol monolaurate (GML), a 12 carbon fatty acid monoester, inhibits Staphylococcus aureus growth and exotoxin production, but is degraded by S. aureus lipase. Therefore, dodecylglycerol (DDG), a 12 carbon fatty acid monoether, was compared in vitro and in vivo to GML for its effects on S. aureus growth, exotoxin production, and stability.

Methodology/Principal Findings

Antimicrobial effects of GML and DDG (0 to 500 µg/ml) on 54 clinical isolates of S. aureus, including pulsed-field gel electrophoresis (PFGE) types USA200, USA300, and USA400, were determined in vitro. A rabbit Wiffle ball infection model assessed GML and DDG (1 mg/ml instilled into the Wiffle ball every other day) effects on S. aureus (MN8) growth (inoculum 3×108 CFU/ml), toxic shock syndrome toxin-1 (TSST-1) production, tumor necrosis factor-α (TNF-α) concentrations and mortality over 7 days. DDG (50 and 100 µg/ml) inhibited S. aureus growth in vitro more effectively than GML (p<0.01) and was stable to lipase degradation. Unlike GML, DDG inhibition of TSST-1 was dependent on S. aureus growth. GML-treated (4 of 5; 80%) and DDG-treated rabbits (2 of 5; 40%) survived after 7 days. Control rabbits (5 of 5; 100%) succumbed by day 4. GML suppressed TNF-α at the infection site on day 7; however, DDG did not (<10 ng/ml versus 80 ng/ml, respectively).

Conclusions/Significance

These data suggest that DDG was stable to S. aureus lipase and inhibited S. aureus growth at lower concentrations than GML in vitro. However, in vivo GML was more effective than DDG by reducing mortality, and suppressing TNF-α, S. aureus growth and exotoxin production, which may reduce toxic shock syndrome. GML is proposed as a more effective anti-staphylococcal topical anti-infective candidate than DDG, despite its potential degradation by S. aureus lipase.  相似文献   

14.
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as one of the most important pathogens both in health care and community-onset infections. The prerequisite for methicillin resistance is mecA, which encodes a β-lactam-insensitive penicillin binding protein PBP2a. A characteristic of MRSA strains from hospital and community associated infections is their heterogeneous expression of resistance to β-lactam (HeR) in which only a small portion (≤0.1%) of the population expresses resistance to oxacillin (OXA) ≥10 µg/ml, while in other isolates, most of the population expresses resistance to a high level (homotypic resistance, HoR). The mechanism associated with heterogeneous expression requires both increase expression of mecA and a mutational event that involved the triggering of a β-lactam-mediated SOS response and related lexA and recA genes. In the present study we investigated the cellular physiology of HeR-MRSA strains during the process of β-lactam-mediated HeR/HoR selection at sub-inhibitory concentrations by using a combinatorial approach of microarray analyses and global biochemical profiling employing gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) to investigate changes in metabolic pathways and the metabolome associated with β-lactam-mediated HeR/HoR selection in clinically relevant heterogeneous MRSA. We found unique features present in the oxacillin-selected SA13011-HoR derivative when compared to the corresponding SA13011-HeR parental strain that included significant increases in tricarboxyl citric acid (TCA) cycle intermediates and a concomitant decrease in fermentative pathways. Inactivation of the TCA cycle enzyme cis-aconitase gene in the SA13011-HeR strain abolished β-lactam-mediated HeR/HoR selection demonstrating the significance of altered TCA cycle activity during the HeR/HoR selection. These results provide evidence of both the metabolic cost and the adaptation that HeR-MRSA clinical strains undergo when exposed to β-lactam pressure, indicating that the energy production is redirected to supply the cell wall synthesis/metabolism, which in turn contributes to the survival response in the presence of β-lactam antibiotics.  相似文献   

15.
Nisin in combination with ultrahigh-pressure treatment (UHP) showed strong synergistic effects against Lactobacillus plantarum and Escherichia coli at reduced temperatures (<15°C). The strongest inactivation effects were observed when nisin was present during pressure treatment and in the recovery medium. Elimination (>6-log reductions) of L. plantarum was achieved at 10°C with synergistic combinations of 0.5 μg of nisin per ml at 150 MPa and 0.1 μg of nisin per ml at 200 MPa for 10 min. Additive effects of nisin and UHP accounted for only 1.2- and 3.7-log reductions, respectively. Elimination was also achieved for E. coli at 10°C with nisin present at 2 μg/ml, and 10 min of pressure at 200 MPa, whereas the additive effect accounted for only 2.6-log reductions. Slight effects were observed even against the yeast Saccharomyces cerevisiae with nisin present at 5 μg/ml and with 200 MPa of pressure. Combining nisin, UHP, and lowered temperature may allow considerable reduction in time and/or pressure of UHP treatments. Kill can be complete without the frequently encountered survival tails in UHP processing. The slightly enhanced synergistic kill with UHP at reduced temperatures was also observed for other antimicrobials, the synthetic peptides MB21 and histatin 5. The postulated mode of action was that the reduced temperature and the binding of peptides to the membrane increased the efficacy of UHP treatment. The increases in fatty acid saturation or diphosphatidylglycerol content and the lysylphosphatidyl content of the cytoplasm membrane of L. plantarum were correlated with increased susceptibility to UHP and nisin, respectively.  相似文献   

16.

Background

The current era is facing challenges in the management of neoplasia and weeds control. The currently available anti-cancer and herbicidal drugs are associated with some serious side effects. Therefore numerous researchers are trying to discover and develop plant based alternative particularly for the rational management of cancer and weed control. Teucrium stocksianum possess antioxidant and analgesic activities. The current study was designed to evaluate crude saponins (CS), methanolic extract and sub-fractions of T. stocksianum for cytotoxic and phytotoxic potentials. CS, methanolic extract and sub-fractions were extracted from powdered plant material using different solvents. Cytotoxic potential of the extracts at a dose of 10, 100 and 1000 μg/ml were evaluated against Brine shrimp’s nauplii. Phytotoxic assay also performed at the same concentration against Lemna minor. Etoposide and Paraquat were used as positive controls in cytotoxic and phytotoxic assays respectively.

Results

The percent yield of crude saponins was (5%). CS demonstrated tremendous brine shrimp lethality showing < 10 μg/ml LC50. The n-hexane (HF) and chloroform fractions (CF) demonstrated excellent cytotoxicity with 80 and 55 μg/ml LC50 respectively. Whereas the methanolic extract (TSME), ethyl acetate (EAF) and aqueous fractions (AF) revealed moderate cytotoxicity showing 620, 860 and 1000 μg/ml LC50 values respectively. In phytotoxic assay profound inhibition was displayed by HF (96.67%) and TSME (95.56%, 30 μg/ml LC50) against the growth of Lemna minor at 1000 μg/ml respectively. Both CF and EAF demonstrated profound phytoxicity (93.33%) respectively at highest concentration (1000 μg/ml), while AF and CS demonstrated weak phytotoxicity with 1350 and 710 μg/ml LC50 values respectively.

Conclusion

Cytotoxicity and phytotoxicity assays indicated that the crude saponins, n-hexane and chloroform fractions of T. stocksianum could play a vital role in the treatment of neoplasia and as potential natural herbicides. Therefore these sub-fractions are recommended for further investigation with the aim to isolate novel anti-cancer and herbicidal compounds.  相似文献   

17.

Background

There is a need for biomarkers insuring identification of septic patients at high-risk for death. We performed a prospective, multicenter, observational study to investigate the time-course of lipopolysaccharide binding protein (LBP) serum levels in patients with severe sepsis and examined whether serial serum levels of LBP could be used as a marker of outcome.

Methodology/Principal Findings

LBP serum levels at study entry, at 48 hours and at day-7 were measured in 180 patients with severe sepsis. Data regarding the nature of infections, disease severity, development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), and intensive care unit (ICU) outcome were recorded. LBP serum levels were similar in survivors and non-survivors at study entry (117.4±75.7 µg/mL vs. 129.8±71.3 µg/mL, P = 0.249) but there were significant differences at 48 hours (77.2±57.0 vs. 121.2±73.4 µg/mL, P<0.0001) and at day-7 (64.7±45.8 vs. 89.7±61.1 µg/ml, p = 0.017). At 48 hours, LBP levels were significantly higher in ARDS patients than in ALI patients (112.5±71.8 µg/ml vs. 76.6±55.9 µg/ml, P = 0.0001). An increase of LBP levels at 48 hours was associated with higher mortality (odds ratio 3.97; 95%CI: 1.84–8.56; P<0.001).

Conclusions/Significance

Serial LBP serum measurements may offer a clinically useful biomarker for identification of patients with severe sepsis having the worst outcomes and the highest probability of developing sepsis-induced ARDS.  相似文献   

18.
The levels of Hsp27 and αB-crystallin in C6 rat glioma cells, that had been heated at 43°C for 30 min with a subsequent culture for 16 h at 37°C, were markedly increased. The exposure of the cells to a low concentration (0.1–3 µg/ml) of anisomycin for a few hours after heat stress stimulated the accumulation of the small stress proteins Hsp27 and αB-crystallin, but not that of Hsp70. The levels of mRNAs for Hsp27 and αB-crystallin but not that for Hsp70 increased in cells that had been exposed to heat and subsequently for 2 h to 0.1–3 µg/ml anisomycin. The results of a reporter assay, using an αB-crystallin promotor fused to a luciferase reporter gene, suggested that the increase in level of αB-crystallin mRNA was due to the production of new mRNA. The activation of the binding of heat shock factors to heat shock elements induced in cells that had been heat stressed was barely affected by subsequent exposure to anisomycin at 0.3 µg/ml. The stimulatory effects of anisomycin were also observed in cells that had been exposed to NaAsO2, or CdCl2. The active form of p38 mitogen activated protein (MAP) kinase was increased in cell that had been subjected to heat shock and subsequent exposure to 0.3 µg/ml of anisomycin. The heat-induced accumulations of Hsp27 and αB-crystallin were also stimulated by cycloheximide, another stimulator of p38 MAP kinase. SB202190, a specific inhibitor of p38 MAP kinase, suppressed the stimulation by anisomycin of the heat stress-induced expressions of Hsp27 and αB-crystallin. These results suggest that the signal transduction pathway of the stress-induced expressions of Hsp27 and αB-crystallin in C6 glioma cells includes a process that is sensitive to p38 MAP kinase.  相似文献   

19.
Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.  相似文献   

20.
β-catenin is a key signaling molecule in the canonical Wnt pathway, which is involved in animal development. However, little information has been reported for β-catenin in bivalves. In the present study, we cloned a homolog of β-catenin from the scallop Chlamys farreri and determined its expression characteristics. The full-length cDNA of β-catenin was 3,353 bp, including a 2,511 bp open reading frame that encoded a predicted 836 amino acid protein. Level of the β-catenin mRNA increased significantly (P<0.05) with C. farreri gonadal development and presented a sexually dimorphic expression pattern in the gonads, which was significantly high in ovaries detected by quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis revealed that the β-catenin was mainly located in germ cells of the gonads, with obvious positive immune signals in the oogonia and oocytes of ovaries as well as in the spermatogonia and spermatocytes of testes, implying β-catenin might be involved in the gametogenesis of C. farreri. Furthermore, when 0.1 µg/mL and 0.2 µg/mL DKK-1 (an inhibitor of the canonical Wnt pathway) were added in vitro to culture medium containing testis cells of C. farreri, the expression of β-catenin decreased significantly detected by qRT-PCR (P<0.05), suggesting the canonical Wnt signal pathway exists in the scallop testis. Similarly, when 50 µM and 100 µM quercetin (an inhibitor of β-catenin) were added in vitro to the culture system, Dax1 expression was significantly down-regulated compared with controls (P<0.05), implying the β-catenin is an upstream gene of Dax1 and is involved in the regulation of C. farreri spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号