共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Melino G 《Cell death and differentiation》2011,18(9):1487-1499
p53 mutations, occurring in two-thirds of all human cancers, confer a gain of function phenotype, including the ability to form metastasis, the determining feature in the prognosis of most human cancer. This effect seems mediated at least partially by its ability to physically interact with p63, thus affecting a cell invasion pathway, and accordingly, p63 is deregulated in human cancers. In addition, p63, as an 'epithelial organizer', directly impinges on epidermal mesenchimal transition, stemness, senescence, cell death and cell cycle arrest, all determinant in cancer, and thus p63 affects chemosensitivity and chemoresistance. This demonstrates an important role for p63 in cancer development and its progression, and the aim of this review is to set this new evidence that links p63 to metastasis within the context of the long conserved other functions of p63. 相似文献
4.
5.
Yan W Zhang Y Zhang J Liu S Cho SJ Chen X 《The Journal of biological chemistry》2011,286(20):17478-17486
p53 is frequently mutated in tumor cells, and mutant p53 is often highly expressed due to its increased half-life. Thus, targeting mutant p53 for degradation might be explored as a therapeutic strategy to manage tumors that are addicted to mutant p53 for survival. Arsenic trioxide, a drug for patients with acute promyelocytic leukemia, is found to target and degrade a class of proteins with high levels of cysteine residues and vicinal thiol groups, such as promyelocytic leukemia protein (PML) and PML-retinoic acid receptor α fusion protein. Interestingly, wild type p53 is accumulated in cells treated with arsenic compounds, presumably due to arsenic-induced oxidative stresses. In this study, we found that wild type p53 is induced by arsenic trioxide in tumor cells, consistent with published studies. In contrast, we found that arsenic compounds degrade both endogenous and ectopically expressed mutant p53 in time- and dose-dependent manners. We also found that arsenic trioxide decreases the stability of mutant p53 protein through a proteasomal pathway, and blockage of mutant p53 nuclear export can alleviate the arsenic-induced mutant p53 degradation. Furthermore, we found that knockdown of endogenous mutant p53 sensitizes, whereas ectopic expression of mutant p53 desensitizes, tumor cells to arsenic treatment. Taken together, we found that mutant p53 is a target of arsenic compounds, which provides an insight into exploring arsenic compound-based therapy for tumors harboring a mutant p53. 相似文献
6.
7.
8.
《Cell cycle (Georgetown, Tex.)》2013,12(21):3701-3705
9.
Mdm2 (Murine Double Minute-2) is required to control cellular p53 activity and protein levels. Mdm2 null embryos die of p53-mediated growth arrest and apoptosis at the peri-implantation stage. Thus, the absolute requirement for Mdm2 in organogenesis is unknown. This study examined the role of Mdm2 in kidney development, an organ which develops via epithelial–mesenchymal interactions and branching morphogenesis. Mdm2 mRNA and protein are expressed in the ureteric bud (UB) epithelium and metanephric mesenchyme (MM) lineages. We report here the results of conditional deletion of Mdm2 from the UB epithelium. UBmdm2−/− mice die soon after birth and uniformly display severe renal hypodysplasia due to defective UB branching and underdeveloped nephrogenic zone. Ex vivo cultured UBmdm2−/− explants exhibit arrested development of the UB and its branches and consequently develop few nephron progenitors. UBmdm2−/− cells have reduced proliferation rate and enhanced apoptosis. Although markedly reduced in number, the UB tips of UBmdm2−/−metanephroi continue to express c-ret and Wnt11; however, there was a notable reduction in Wnt9b, Lhx-1 and Pax-2 expression levels. We further show that the UBmdm2−/− mutant phenotype is mediated by aberrant p53 activity because it is rescued by UB-specific deletion of the p53 gene. These results demonstrate a critical and cell autonomous role for Mdm2 in the UB lineage. Mdm2-mediated inhibition of p53 activity is a prerequisite for renal organogenesis. 相似文献
10.
p51/p63, a novel p53 homologue, potentiates p53 activity and is a human cancer gene therapy candidate 总被引:6,自引:0,他引:6
Kunisaki R Ikawa S Maeda T Nakazaki Y Kurita R Harata M Shutoh Y Bai YS Soda Y Tanabe T Dohi T Kato R Ikawa Y Asano S Tani K 《The journal of gene medicine》2006,8(9):1121-1130
BACKGROUND: p51 (p73L/p63/p40/KET), a recently isolated novel p53 homologue, binds to p53-responsive elements to upregulate some p53 target genes and has been suggested to share partially overlapping functions with p53. p51 may be a promising candidate target molecule for anti-cancer therapy. METHODS: In this study, we adenovirally transduced p51A cDNA into human lung, gastric and pancreatic cancer cells and analyzed the intracellular function of p51 in anti-oncogenesis in vitro and in vivo. RESULTS: Overexpression of p51A revealed an anti-proliferative effect in vitro in all the cancer cells examined in this study. The anchorage-dependent and -independent cell growth of EBC1 cells carrying mutations in both p51 and p53 was suppressed and significant apoptosis following adenoviral transduction with p51 and/or p53 was seen. This growth suppression was cooperatively enhanced by the combined infection with adenoviral vectors encoding both p51 and p53. Furthermore, p51 activated several, but not all, p53-inducible genes, indicating that the mechanisms controlling p51- and p53-mediated tumor suppression differed. CONCLUSIONS: Our observations indicate that, although p51 exhibited reduced anti-oncogenetic effects compared with p53, it cooperatively enhanced the anti-tumor effects of p53. Our results suggest that p51 functions as a tumor suppressor in human cancer cells in vitro and in vivo and may be useful as a potential tool for cancer gene therapy. 相似文献
11.
The magnitude of methylmercury-induced cytotoxicity and cell cycle arrest is p53-dependent 总被引:2,自引:0,他引:2
Gribble EJ Hong SW Faustman EM 《Birth defects research. Part A, Clinical and molecular teratology》2005,73(1):29-38
BACKGROUND: Methylmercury (MeHg), a ubiquitous environmental contaminant, is a known potent teratogen selectively affecting the developing central nervous system. While a definitive mechanism for MeHg-induced developmental neurotoxicity remains elusive, in utero exposure has been associated with reduced brain weight and reduction in cell number. This suggests early toxicant interference with critical molecular signaling events controlling cell behavior, i.e., proliferation. METHODS: To examine the role of p53, a major regulator of the G(1)/S and G(2)/M cell cycle checkpoints, in MeHg toxicity, we isolated GD 14 primary embryonal fibroblasts from homozygous wild-type p53 (p53+/+) and homozygous null p53 (p53-/-) mice. Cells were treated at passages 4-7 for 24 or 48 hr with 0, 1.0, or 2.5 microM MeHg and analyzed for effects on viability, cell cycle progression (using BrdU-Hoechst flow cytometric analysis), and apoptosis via annexin V-FITC and propidium iodide (PI) staining. RESULTS: The p53+/+ cells are more sensitive than p53-/- cells to MeHg-induced cytotoxicity, cell cycle inhibition, and induction of apoptosis: at 24 hr, 2.5 microM MeHg reduced p53+/+ cell viability to 72.6% +/- 3.2%, while p53-/- viability was 94.6% +/- 0.4%. The p53-/- cells underwent less necrosis and less apoptosis following MeHg treatment. MeHg (2.5 microM) also halted all cycling in the p53+/+ cells, while 42.6% +/- 7.2% of p53-/- cells were able to reach a new G(0)/G(1) in 48 hr. Time- and dose-dependent accumulation of cells in G(2)/M phase (1.0 and 2.5 microM MeHg) was observed independent of the p53 genotype; however, the magnitude of change was p53-dependent. CONCLUSIONS: These studies suggest that MeHg-induced cell cycle arrest occurs via both p53-dependent and -independent pathways in our model system; however, cell death resulting from MeHg exposure is highly dependent on p53. 相似文献
12.
Navrátilová J Horváth V Kozubík A Lojek A Lipsick J Smarda J 《Differentiation; research in biological diversity》2007,75(7):592-604
Abstract The p53 protein can control cell cycle progression, programmed cell death, and differentiation of many cell types. Ectopic expression of p53 can resume capability of cell cycle arrest, differentiation, and apoptosis in various leukemic cell lines. In this work, we expressed human p53 protein in v-Myb-transformed chicken monoblasts. We found that even this protein possessing only 53% amino acid homology to its avian counterpart can significantly alter morphology and physiology of these cells causing the G2-phase cell cycle arrest and early monocytic differentiation. Our results document that the species-specific differences of the p53 molecules, promoters/enhancers, and co-factors in avian and human cells do not interfere with differentiation- and cell cycle arrest promoting capabilites of the p53 tumor suppressor even in the presence of functional v-Myb oncoprotein. The p53-induced differentiation and cell cycle arrest of v-Myb-transformed monoblasts are not associated with apoptosis suggesting that the p53-driven pathways controlling apoptosis and differentiation/proliferation are independent. 相似文献
13.
A role for p53 in base excision repair 总被引:22,自引:0,他引:22
Wild-type p53 protein can markedly stimulate base excision repair (BER) in vitro, either reconstituted with purified components or in extracts of cells. In contrast, p53 with missense mutations either at hot-spots in the core domain or within the N-terminal transactivation domain is defective in this function. Stimulation of BER by p53 is correlated with its ability to interact directly both with the AP endonuclease (APE) and with DNA polymerase beta (pol beta). Furthermore, p53 stabilizes the interaction between DNA pol beta and abasic DNA. Evidence that this function of p53 is physiologically relevant is supported by the facts that BER activity in human and murine cell extracts closely parallels their levels of endogenous p53, and that BER activity is much reduced in cell extracts immunodepleted of p53. These data suggest a novel role for p53 in DNA repair, which could contribute to its function as a key tumor suppressor. 相似文献
14.
15.
Mulin Xiong Ianina C Ferder Yasuyo Ohguchi Ning Wang 《Cell cycle (Georgetown, Tex.)》2015,14(18):2905-2913
p53 protects cells from DNA damage by inducing cell-cycle arrest upon encountering genomic stress. Among other pathways, p53 elicits such an effect by inhibiting mammalian target of rapamycin complex 1 (mTORC1), the master regulator of cell proliferation and growth. Although recent studies have indicated roles for both p53 and mTORC1 in stem cell maintenance, it remains unclear whether the p53-mTORC1 pathway is conserved to mediate this process under normal physiological conditions. Spermatogenesis is a classic stem cell-dependent process in which undifferentiated spermatogonia undergo self-renewal and differentiation to maintain the lifelong production of spermatozoa. To better understand this process, we have developed a novel flow cytometry (FACS)-based approach that isolates spermatogonia at consecutive differentiation stages. By using this as a tool, we show that genetic loss of p53 augments mTORC1 activity during early spermatogonial differentiation. Functionally, loss of p53 drives spermatogonia out of the undifferentiated state and causes a consistent expansion of early differentiating spermatogonia until the stage of preleptotene (premeiotic) spermatocyte. The frequency of early meiotic spermatocytes is, however, dramatically decreased. Thus, these data suggest that p53-mTORC1 pathway plays a critical role in maintaining the homeostasis of early spermatogonial differentiation. Moreover, our FACS approach could be a valuable tool in understanding spermatogonial differentiation. 相似文献
16.
Pfeifer GP 《Mutation research》2000,450(1-2):155-166
The occurrence of tumor-specific mutational spectra in the p53 mutation database provides indirect evidence that implicates certain exogenous and possibly endogenous mutagenic events in human carcinogenesis. In some cases, the distribution of DNA damage along the p53 gene caused by environmental carcinogens can be correlated with the mutational spectra, i.e. hotspots and types of mutations of certain cancers, most notably for nonmelanoma skin cancers and lung cancers in smokers. This concept has been validated by experiments with sunlight and cigarette smoke components representing the polycyclic aromatic hydrocarbon class of carcinogens. A disproportionally high number of mutations in p53 (and other genes) are found at methylated CpG dinucleotides. These sequences are particularly prone to mutagenesis involving endogenous events as well as modification by exogenous carcinogens. 相似文献
17.
18.
19.
Brázda V Jagelská EB Fojta M Palecek E 《Biochemical and biophysical research communications》2006,341(2):470-477
One of the most important functions of the tumor suppressor p53 protein is its sequence-specific binding to DNA. Using a competition assay on agarose gels we found that the p53 consensus sequences in longer DNA fragments are better targets than the same sequences in shorter DNAs. Semi-quantitative evaluation of the competition experiments showed a correlation between the relative p53-DNA binding and the DNA lengths. Our results are consistent with a model of the p53-DNA interactions involving one-dimensional migration of the p53 protein along the DNA for distances of about 1000 bp while searching for its target sites. Positioning of the p53 target in the DNA fragment did not substantially affect the apparent p53-DNA binding, suggesting that p53 can slide along the DNA in a bi-directional manner. In contrast to full-length p53, the isolated core domain did not show any significant correlation between sequence-specific DNA binding and fragment length. 相似文献
20.
Ma W Sung HJ Park JY Matoba S Hwang PM 《Journal of bioenergetics and biomembranes》2007,39(3):243-246
The genetic basis of increased glycolytic activity observed in cancer cells is likely to be the result of complex interactions
of multiple regulatory pathways. Here we review the recent evidence of a simple genetic mechanism by which tumor suppressor
p53 regulates mitochondrial respiration with secondary changes in glycolysis that are reminiscent of the Warburg effect. The
biological significance of this regulation of the two major pathways of energy generation by p53 remains to be seen. 相似文献