首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few reports have described in detail a true autoactivation process, where no extrinsic cleavage factors are required to initiate the autoactivation of a zymogen. Herein, we provide structural and mechanistic insight into the autoactivation of a multidomain serine protease: mannose-binding lectin-associated serine protease-2 (MASP-2), the first enzymatic component in the lectin pathway of complement activation. We characterized the proenzyme form of a MASP-2 catalytic fragment encompassing its C-terminal three domains and solved its crystal structure at 2.4 A resolution. Surprisingly, zymogen MASP-2 is capable of cleaving its natural substrate C4, with an efficiency about 10% that of active MASP-2. Comparison of the zymogen and active structures of MASP-2 reveals that, in addition to the activation domain, other loops of the serine protease domain undergo significant conformational changes. This additional flexibility could play a key role in the transition of zymogen MASP-2 into a proteolytically active form. Based on the three-dimensional structures of proenzyme and active MASP-2 catalytic fragments, we present model for the active zymogen MASP-2 complex and propose a mechanism for the autoactivation process.  相似文献   

2.
Mannan-binding lectin (MBL) plays a pivotal role in innate immunity by activating complement after binding carbohydrate moieties on pathogenic bacteria and viruses. Structural similarities shared by MBL and C1 complexes and by the MBL- and C1q-associated serine proteases, MBL-associated serine protease (MASP)-1 and MASP-2, and C1r and C1s, respectively, have led to the expectation that the pathways of complement activation by MBL and C1 complexes are likely to be very similar. We have expressed rMASP-2 and show that, whereas C1 complex autoactivation proceeds via a two-step mechanism requiring proteolytic activation of both C1r and C1s, reconstitution with MASP-2 alone is sufficient for complement activation by MBL. The results suggest that the catalytic activities of MASP-2 split between the two proteases of the C1 complex during the course of vertebrate complement evolution.  相似文献   

3.
The complement system plays an important role in innate immunity. In the lectin complement pathway, mannose-binding lectin (MBL) and ficolins act as recognition molecules, and MBL-associated serine protease (MASP) is a key enzyme. It has been suggested that MASP-2 is responsible for the activation of C4. Other serine proteases (MASP-1 and MASP-3) are also associated with MBL or ficolins; however, their functions are still controversial. In this study, a MASP-1- and MASP-3-deficient mouse model (MASP1/3(-/-)) was generated by a gene targeting strategy to investigate the roles of MASP-1 and MASP-3 in the lectin pathway. Serum derived from MASP1/3(-/-) mice showed significantly lower activity of both C4 and C3 deposition on mannan-agarose, and this low activity was restored by the addition of recombinant MASP-1. MASP-1/3-deficient serum showed a significant delay for activation of MASP-2 compared with normal serum. Reconstitution of recombinant MASP-1 in MASP-1/3-deficient serum was able to promote the activation of MASP-2. From these results, we propose that MASP-1 contributes to the activation of the lectin pathway, probably through the activation of MASP-2.  相似文献   

4.
The human lectin complement pathway activation molecules comprise mannose-binding lectin (MBL) and ficolin-1, -2, and -3 in complex with associated serine proteases MASP-1, -2, and -3 and the non-enzymatic small MBL associated protein or sMAP. Recently, a novel plasma protein named MBL/ficolin-associated protein-1 (MAP-1) was identified in humans. This protein is the result of a differential splicing of the MASP1 gene and includes the major part of the heavy chain but lacks the serine protease domain. We investigated the direct interactions of MAP-1 and MASP-3 with ficolin-3 and MBL using surface plasmon resonance and found affinities around 5 nm and 2.5 nm, respectively. We studied structural aspects of MAP-1 and could show by multi-angle laser light scattering that MAP-1 forms a calcium-dependent homodimer in solution. We were able to determine the crystal structure of MAP-1, which also contains a head-to-tail dimer ∼146 Å long. This structure of MAP-1 also enables modeling and assembly of the MASP-1 molecule in its entirety. Finally we found that MAP-1 competes with all three MASPs for ligand binding and is able to mediate a strong dose-dependent inhibitory effect on the lectin pathway activation, as measured by levels of C3 and C9.  相似文献   

5.
6.
MBL调控MASP激活补体系统   总被引:3,自引:0,他引:3  
甘露聚糖结合凝集素(MBL;或甘露聚糖结合蛋白,MBP)是由相同的多肽链组成的寡聚物,它通过结合细胞表面的碳水化合物能够有效地识别侵入体内的多种致病微生物,并激活补体来杀灭病原微生物。MBL能与血清中其相关蛋白酶(MASP)结合,MASP包含3个丝氨酸蛋白酶MASP-1、MASP-2、MASP-3和非酶蛋白MAp19。研究显示,MBL通过2种机理调控MASP-2的活性,在先天性免疫中具有重要的作用。本文简要综述MBL调控MASP激活补体的作用机理。  相似文献   

7.
Mannan-binding lectin (MBL) initiates complement activation by binding to arrays of carbohydrates on the surfaces of pathogenic microorganisms and activating MBL-associated serine proteases (MASPs). Separate point mutations to the collagenous domain of human MBL are associated with immunodeficiency, caused by reduced complement activation by the variant MBLs as well as by lower serum MBL concentrations. In the work reported here, we have used the well characterized rat lectin pathway to analyze the molecular and functional defects associated with two of the variant proteins. Mutations Gly25 --> Asp and Gly28 --> Glu create comparable structural changes in rat MBL but the G28E variant activates complement >10-fold less efficiently than the G25D variant, which in turn has approximately 7-fold lower activity than wild-type MBL. Analysis of mutant MBL . MASP-2 complexes assembled from recombinant components shows that reduced complement activation by both mutant MBLs is caused by failure to activate MASP-2 efficiently on binding to a mannan-coated surface. Disruption of MBL-MASP-2 interactions as well as to changes in oligomeric structure and reduced binding to carbohydrate ligands compared with wild-type MBL probably account for the intermediate phenotype of the G25D variant. However, carbohydrate binding and MASP-2 activation are ostensibly completely decoupled in complexes assembled from the G28E mutant, such that the rate of MASP-2 activation is no greater than the basal rate of zymogen MASP-2 autoactivation. Analogous molecular defects in human MBL probably combine to create the mutant phenotypes of immunodeficient individuals.  相似文献   

8.
Serum mannose-binding protein (MBP) neutralizes invading microorganisms by binding to cell surface carbohydrates and activating MBP-associated serine proteases-1, -2, and -3 (MASPs). MASP-2 subsequently cleaves complement components C2 and C4 to activate the complement cascade. To analyze the mechanisms of activation and substrate recognition by MASP-2, zymogen and activated forms have been produced, and MBP.MASP-2 complexes have been created. These preparations have been used to show that MBP modulates MASP-2 activity in two ways. First, MBP stimulates MASP-2 autoactivation by increasing the rate of autocatalysis when MBP.MASP-2 complexes bind to a glycan-coated surface. Second, MBP occludes accessory C4-binding sites on MASP-2 until activation occurs. Once these sites become exposed, MASP-2 binds to C4 while separate structural changes create a functional catalytic site able to cleave C4. Only activated MASP-2 binds to C2, suggesting that this substrate interacts only near the catalytic site and not at accessory sites. MASP-1 cleaves C2 almost as efficiently as MASP-2 does, but it does not cleave C4. Thus MASP-1 probably enhances complement activation triggered by MBP.MASP-2 complexes, but it cannot initiate activation itself.  相似文献   

9.
Mannan-binding lectin (MBL) is an oligomeric lectin that binds neutral carbohydrates on pathogens, forms complexes with MBL-associated serine proteases (MASP)-1, -2, and -3 and 19-kDa MBL-associated protein (MAp19), and triggers the complement lectin pathway through activation of MASP-2. To identify the MASP binding site(s) of human MBL, point mutants targeting residues C-terminal to the hinge region were produced and tested for their interaction with the MASPs and MAp19 using surface plasmon resonance and functional assays. Mutation Lys(55)Ala abolished interaction with the MASPs and MAp19 and prevented formation of functional MBL-MASP-2 complexes. Mutations Lys(55)Gln and Lys(55)Glu abolished binding to MASP-1 and -3 and strongly inhibited interaction with MAp19. Conversely, mutation Lys(55)Arg abolished interaction with MASP-2 and MAp19, but only weakened interaction with MASP-1 and -3. Mutation Arg(47)Glu inhibited interaction with MAp19 and decreased the ability of MBL to trigger the lectin pathway. Mutant Arg(47)Lys showed no interaction with the MASPs or MAp19, likely resulting from a defect in oligomerization. In contrast, mutation Arg(47)Ala had no impact on the interaction with the MASPs and MAp19, nor on the ability of MBL to trigger the lectin pathway. Mutation Pro(53)Ala only had a slight effect on the interaction with MASP-1 and -3, whereas mutations at residues Leu(49) and Leu(56) were ineffective. In conclusion, the MASP binding site of MBL involves a sequence stretch centered on residue Lys(55), which may form an ionic bond representing the major component of the MBL-MASP interaction. The binding sites for MASP-2/MAp19 and MASP-1/3 have common features but are not strictly identical.  相似文献   

10.
Mannose-Binding Lectin (MBL) is a serum pattern recognition molecule, able to activate complement in association with MASP proteases. Serum levels of MBL and MASP-2, activities of MBL–MASP complexes, single nucleotide polymorphisms of the MBL2 and MASP2 genes and/or their specific mRNA expression in ovarian sections were investigated in 128 patients suffering from primary ovarian cancer (OC) and compared with 197 controls (C), encompassing both patients with benign ovarian tumours (n = 123) and others with no ovarian pathology (n = 74). MBL deficiency-associated genotypes were more common among OC patients than among controls. The O/O group of genotypes was associated with ovarian cancer (OR 3.5, p = 0.02). In A/A homozygotes, MBL concentrations and activities were elevated in the OC group and correlated with C-reactive protein. Moreover, high MBL serum levels were associated with more advanced disease stage. No differences in distribution of the MASP2 +359 A>G (D120G) SNP or MASP-2 serum levels were found between cancer patients and their controls. However, the highest frequency of the A/G (MASP2) and LXA/O or O/O (MBL2) genotypes was found among OC patients with tumours of G1–2 grade (well/moderately differentiated). Furthermore, MBL deficiency-associated genotypes predicted prolonged survival. None of the parameters investigated correlated with CA125 antigen or patients’ age. The local expression of MBL2 and MASP2 genes was higher in women with ovarian cancer compared with controls. It is concluded that the expression of MBL and MASP-2 is altered in ovarian cancer, possibly indicating involvement of the lectin pathway of complement activation in the disease.  相似文献   

11.
The lectin pathway is an antibody-independent activation route of the complement system. It provides immediate defense against pathogens and altered self-cells, but it also causes severe tissue damage after stroke, heart attack, and other ischemia reperfusion injuries. The pathway is triggered by target binding of pattern recognition molecules leading to the activation of zymogen mannan-binding lectin-associated serine proteases (MASPs). MASP-2 is considered as the autonomous pathway-activator, while MASP-1 is considered as an auxiliary component. We evolved a pair of monospecific MASP inhibitors. In accordance with the key role of MASP-2, the MASP-2 inhibitor completely blocks the lectin pathway activation. Importantly, the MASP-1 inhibitor does the same, demonstrating that MASP-1 is not an auxiliary but an essential pathway component. We report the first Michaelis-like complex structures of MASP-1 and MASP-2 formed with substrate-like inhibitors. The 1.28 Å resolution MASP-2 structure reveals significant plasticity of the protease, suggesting that either an induced fit or a conformational selection mechanism should contribute to the extreme specificity of the enzyme.  相似文献   

12.
Mannose-binding lectin (MBL) is an oligomeric serum lectin involved in innate immunity. Human MBL is complexed with three types of serine proteases (MASP-1, MASP-2 and MASP-3) and two types of their truncated forms (sMAP and MAp44). When an MBL complex binds to carbohydrates of pathogens, the complement system is activated via the lectin pathway. Human MBL is a mixture of different sized oligomers that range mainly from trimers to hexamers. It has been suggested that different MBL oligomers may have distinct MASP compositions. In the present study, an MBL trimer (MBL-I) exclusive of other oligomers was isolated from human serum by chromatography. Immunoblot analysis of MBL-I revealed that it had been co-purified with MASP-1 and sMAP. This suggests that MASP-1 and sMAP are bound to each other in MBL-I. The MBL-I complex was found to activate C2, but to lack the ability to activate C4 due to the absence of MASP-2.  相似文献   

13.
Mannan-binding lectin (MBL) forms a multimolecular complex with at least two MBL-associated serine proteases, MASP-1 and MASP-2. This complex initiates the MBL pathway of complement activation by binding to carbohydrate structures present on bacteria, yeast, and viruses. MASP-1 and MASP-2 are composed of modular structural motifs similar to those of the C1q-associated serine proteases C1r and C1s. Another protein of 19 kDa with the same N-terminal sequence as the 76-kDa MASP-2 protein is consistently detected as part of the MBL/MASP complex. In this study, we present the primary structure of this novel MBL-associated plasma protein of 19 kDa, MAp19, and demonstrate that MAp19 and MASP-2 are encoded by two different mRNA species generated by alternative splicing/polyadenylation from one structural gene.  相似文献   

14.
The mannan-binding lectin (MBL) activation pathway of complement plays an important role in the innate immune defense against pathogenic microorganisms. In human serum, two MBL-associated serine proteases (MASP-1, MASP-2) and MBL-associated protein 19 (MAp19) were found to be associated with MBL. With a view to investigate the interaction properties of these proteins, human MASP-1, MASP-2, MAp19, as well as the N-terminal complement subcomponents C1r/C1s, Uegf, and bone morphogenetic protein-1-epidermal growth factor (CUB-EGF) segments of MASP-1 and MASP-2, were expressed in insect or human kidney cells, and MBL was isolated from human serum. Sedimentation velocity analysis indicated that the MASP-1 and MASP-2 CUB-EGF segments and the homologous protein MAp19 all behaved as homodimers (2.8-3.2 S) in the presence of Ca(2+). Although the latter two dimers were not dissociated by EDTA, their physical properties were affected. In contrast, the MASP-1 CUB-EGF homodimer was not sensitive to EDTA. The three proteins and full-length MASP-1 and MASP-2 showed no interaction with each other as judged by gel filtration and surface plasmon resonance spectroscopy. Using the latter technique, MASP-1, MASP-2, their CUB-EGF segments, and MAp19 were each shown to bind to immobilized MBL, with K:(D) values of 0.8 nM (MASP-2), 1.4 nM (MASP-1), 13.0 nM (MAp19 and MASP-2 CUB-EGF), and 25.7 nM (MASP-1 CUB-EGF). The binding was Ca(2+)-dependent and fully sensitive to EDTA in all cases. These data indicate that MASP-1, MASP-2, and MAp19 each associate as homodimers, and individually form Ca(2+)-dependent complexes with MBL through the CUB-EGF pair of each protein. This suggests that distinct MBL/MASP complexes may be involved in the activation or regulation of the MBL pathway.  相似文献   

15.
The chaperone calreticulin has been suggested to function as a C1q and collectin receptor. The interaction of calreticulin with mannan-binding lectin (MBL) was investigated by solid-phase binding assays. Calreticulin showed saturable and time-dependent binding to recombinant MBL, provided that MBL was immobilized on a solid surface or bound to mannan on a surface. The binding was non-covalent and biphasic with an initial salt-sensitive phase followed by a more stable salt-insensitive interaction. For plasma-derived MBL, known to be complexed with MBL-associated serine proteases (MASPs), no binding was observed. Interaction of calreticulin with recombinant MBL was fully inhibited by recombinant MASP-2, MASP-3 and MAp19, but not by the MASP-2 D105G and MAp19 Y59A variants characterized by defective MBL binding ability. Furthermore, MBL point mutants with impaired MASP binding showed no interaction with calreticulin. Comparative analysis of MBL with complement component C1q, its counterpart of the classical pathway, revealed that they display similar binding characteristics for calreticulin, providing further indication that calreticulin is a common co-receptor/chaperone for both proteins. In conclusion, the potential MBL co-receptor calreticulin binds to MBL at the MASP binding site and the interaction may involve a conformational change in MBL.  相似文献   

16.
Mannan-binding lectin (MBL)-associated serine proteases (MASP-1, -2, and -3) are homologous modular proteases that each associate with MBL and L- and H-ficolins, which are oligomeric serum lectins involved in innate immunity. To investigate its physicochemical, interaction, and enzymatic properties, human MASP-3 was expressed in insect cells. Ultracentrifugation analysis indicated that rMASP-3 sedimented as a homodimer (s(20,w) = 6.2 +/- 0.1 S) in the presence of Ca(2+), and as a monomer (s(20,w) = 4.6 +/- 0.1 S) in EDTA. As shown by surface plasmon resonance spectroscopy, it associated with both MBL (K(D) = 2.6 nM) and L-ficolin (K(D) = 7.2 nM). The protease was produced in a single-chain, proenzyme form, but underwent slow activation upon prolonged storage at 4 degrees C, resulting from cleavage at the Arg(430)-Ile(431) activation site. Activation was prevented in the presence of protease inhibitors iodoacetamide and 1,10-phenanthroline but was not abolished upon substitution of Ala for the active site Ser(645) of MASP-3, indicating extrinsic proteolysis. In contrast, the corresponding mutations Ser(627)-->Ala in MASP-1 and Ser(618)-->Ala in MASP-2 stabilized the latter in their proenzyme form. Likewise, the MASP-1 and MASP-2 mutants were each activated by their active counterparts, but MASP-3 S645A was not. Activated MASP-3 did not react with C1 inhibitor; had no activity on complement proteins C2, C4, and C3; and only cleaved the N-carboxybenzyloxyglycine-L-arginine thiobenzyl ester substrate to a significant extent. Based on these observations, it is postulated that MASP-3 activation and control involve mechanisms that are different from those of MASP-1 and -2.  相似文献   

17.
The lectin pathway of complement is considered to be the most ancient complement pathway as inferred from identification of ancient homologs of mannose-binding lectin (MBL) and MBL-associated serine proteases (MASPs) in some invertebrates. MBL homologs with galactose selectivity and an MASP3-like sequence also occur in bony fish, linking the evolution of the lectin complement pathway from invertebrates to higher vertebrates. However, these cannot be considered authentic complement components until confirmatory functional evidence is obtained. Here, we report the isolation and characterization of two MBL homologs from a cyprinid teleost, the common carp, Cyprinus carpio. One, designated GalBL, corresponds to the MBL-like molecule with the galactose specificity. The other is an authentic MBL with mannose specificity. Both were found to associate with a serine protease that cleaves native human C4 into C4b but not C4i with a hydrolyzed thioester. Molecular cloning and phylogenetic analysis revealed this C4-activating protease to be carp MASP2, indicating that MASP2 arose before the emergence of bony fish. Database mining of MBL-like genes reveals that MBL and GalBL genes are arranged in tandem in the zebrafish genome and that both lectins are conserved in the distantly related puffer fish. These results imply that bony fish have developed a diverged set of MBL homologs that function in the lectin complement pathway.  相似文献   

18.
Mannose-binding lectin (MBL)-associated serine proteases (MASPs) are responsible for activation of the lectin complement pathway. Three types of MASPs (MASP-1, MASP-2, and MASP-3) are complexed with MBL and ficolins in serum. Although MASP-1 and MASP-2 are known to contribute to complement activation, the function of MASP-3 remains unclear. In this study, we investigated the mechanism of MASP-3 activation and its substrate using the recombinant mouse MASP-3 (rMASP-3) and several different types of MASP-deficient mice. A proenzyme rMASP-3 was obtained that was not autoactivated during preparation. The recombinant enzyme was activated by incubation with Staphylococcus aureus in the presence of MBL-A, but not MBL-C. In vivo studies revealed the phagocytic activities of MASP-1/3-deficient mice and all MASPs (MASP-1/2/3)-deficient mice against S. aureus and bacterial clearance in these mice were lower than those in wild-type and MASP-2-deficient mice. Sera from all MASPs-deficient mice showed significantly lower C3 deposition activity on the bacteria compared with that of wild-type serum, and addition of rMASP-3 to the deficient serum restored C3 deposition. The low C3 deposition in sera from all MASPs-deficient mice was probably caused by the low level factor B activation that was ameliorated by the addition of rMASP-3. Furthermore, rMASP-3 directly activated factors B and D in vitro. These results suggested that MASP-3 complexed with MBL is converted to an active form by incubation with bacterial targets, and that activated MASP-3 triggered the initial activation step of the alternative complement pathway.  相似文献   

19.
Recently, we described two novel constituents of the multimolecular initiation complex of the mannan-binding lectin (MBL) pathway of complement activation, a serine protease of 76 kDa, termed MASP-2, and a MASP-2 related plasma protein of 19 kDa, termed MAp19. Upon activation of the MBL/MASPs/MAp19 complex, MASP-2 cleaves the fourth complement component C4, while the role of MAp19 within the MBL/MASP-1/MASP-2/MAp19 complex remains to be clarified. In humans, the mRNA species encoding MASP-2 (2.6 kb) and MAp19 (1.0 kb) arise by an alternative polyadenylation/splicing mechanism from a single structural MASP-2 gene. Here, we report the complete primary structures of the rat homologue of MASP-2 and of rat and mouse MAp19. We show that both MASP-2 and MAp19 are part of the rat MBL pathway activation complex and demonstrate their exclusively hepatic biosynthesis. Southern blot and PCR analyses of rat genomic DNA indicate that as in humans, rat MASP-2 and MAp19 are encoded by a single structural gene.  相似文献   

20.
Mannose-binding lectin (MBL) and ficolins are pattern recognition proteins acting in innate immunity, and they trigger the activation of the lectin complement pathway through MBL-associated serine proteases (MASPs). Upon activation of the lectin pathway, MASP-2 cleaves C4 and C2. A truncated form of MASP-2, named small MBL-associated protein (sMAP), is also associated with MBL/ficolin-MASP complexes. To clarify the role of sMAP, we have generated sMAP-deficient (sMAP(-/-)) mice by targeted disruption of the sMAP-specific exon. Because of the gene disruption, the expression level of MASP-2 was also decreased in sMAP(-/-) mice. When recombinant sMAP (rsMAP) and recombinant MASP-2 (rMASP-2) reconstituted the MBL-MASP-sMAP complex in deficient serum, the binding of these recombinant proteins to MBL was competitive, and the C4 cleavage activity of the MBL-MASP-sMAP complex was restored by the addition of rMASP-2, whereas the addition of rsMAP attenuated the activity. Therefore, MASP-2 is essential for the activation of C4 and sMAP plays a regulatory role in the activation of the lectin pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号