首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although stereoacuity and vernier acuity both yield comparable thresholds well below the eye's resolution limit, the neural circuits for these two classes of visual responses do not process the signals in an identical manner. It had previously been demonstrated that hyperacuity is more resistant to image blur than stereoacuity and that the zones within which two targets must be placed to achieve the lowest thresholds differ quite radically. Two further differences are reported here: reduced contrast affects stereoacuity more severely than hyperacuity, as also does shortening of exposure into a range of tens of milliseconds, even when the Bunsen-Roscoe-Bloch law has been factored out.  相似文献   

2.
3.
Aim of the study: Pain perception is associated with different phenotypic characteristics such as sex, eye, and hair color. Hence, it is assumed that ABO blood type can also affect pain perception.

Materials and methods: In order to investigate this hypothesis, an experimental study with healthy volunteers (18–40?years) was designed. The experimental procedure included a blood type test and two rounds of pressure pain threshold assessments separated by a cold pressor test. Pressure pain threshold was assessed bilaterally at the temporalis, masseter, and deltoid muscles, where the muscle sites were randomized. Cold pressor test was conducted by immersion of participants’ non-dominant hand into iced water of 1–4?°C for 2?min.

Results: Thirty-seven healthy volunteers, distributed in the four blood type groups, completed the study. Participants with blood type B scored the highest pressure pain thresholds at the examined craniofacial muscles, while participants with blood type AB tended to score the lowest. Furthermore, participants with blood type AB displayed the highest elevation in pressure pain thresholds after cold pressor test.

Conclusions: Participants with blood type B displayed the lowest mechanical pain sensitivity and the blood type AB group exhibited the strongest conditioned pain modulation effect. These findings emphasize the necessity of considering ABO blood types in future pain research.  相似文献   

4.
We compared near stereoacuity, measured with the Frisby test, and distance stereoacuity, measured with the revised Frisby-Davis (FD2) test, enabling a comparison with the original version of the FD2. In the revised version of the FD2 test, a white background is used instead of a backlit background. We also examined the effect of age, gender and visual problems. We used the Frisby test at distances ranging from 30–80 cm and FD2 at 6 m. The best possible score was 20 seconds of arc (arcsec) on the Frisby and 5 arcsec on the FD2; participants who could not perform a test despite demonstrating understanding of it were classed as stereonegative. We examined both the whole population recruited, and a sub-population screened so as to exclude visual problems. We analysed our results in three age-groups: “visually developing” (36 children aged 5–10 years); “visually mature” (300 participants aged 11–49 years) and “older” (29 participants aged 50–82). In the whole population, the median stereoacuity on the Frisby test was 25, 20 and 85 arcsec in the three age-groups. In the sub-population with no visual problems, median Frisby stereoacuity was similar at 20, 20 and 80 arcsec respectively. On the FD2, the medians were 10, 10, 20 arcsec for the whole population and 7.5, 10 and 12.5 for the sub-population. Children were more likely than adults to be stereonegative on the FD2, although none of the children were stereonegative on the Frisby. The two tests showed fair agreement when used to classify people into three categories of stereovision. Poor stereovision was often associated with binocular problems such as tropia, but with many exceptions. In line with previous studies, we found improvements in measured stereoacuity in childhood and declines in late adulthood. The new FD2 test gives comparable values to the original FD2.  相似文献   

5.
Human performance on various visual tasks can be improved substantially via training. However, the enhancements are frequently specific to relatively low-level stimulus dimensions. While such specificity has often been thought to be indicative of a low-level neural locus of learning, recent research suggests that these same effects can be accounted for by changes in higher-level areas–in particular in the way higher-level areas read out information from lower-level areas in the service of highly practiced decisions. Here we contrast the degree of orientation transfer seen after training on two different tasks—vernier acuity and stereoacuity. Importantly, while the decision rule that could improve vernier acuity (i.e. a discriminant in the image plane) would not be transferable across orientations, the simplest rule that could be learned to solve the stereoacuity task (i.e. a discriminant in the depth plane) would be insensitive to changes in orientation. Thus, given a read-out hypothesis, more substantial transfer would be expected as a result of stereoacuity than vernier acuity training. To test this prediction, participants were trained (7500 total trials) on either a stereoacuity (N = 9) or vernier acuity (N = 7) task with the stimuli in either a vertical or horizontal configuration (balanced across participants). Following training, transfer to the untrained orientation was assessed. As predicted, evidence for relatively orientation specific learning was observed in vernier trained participants, while no evidence of specificity was observed in stereo trained participants. These results build upon the emerging view that perceptual learning (even very specific learning effects) may reflect changes in inferences made by high-level areas, rather than necessarily fully reflecting changes in the receptive field properties of low-level areas.  相似文献   

6.
BACKGROUND: An animal's state of arousal is fundamental to all of its behavior. Arousal is generally ascertained by measures of movement complemented by brain activity recordings, which can provide signatures independently of movement activity. Here we examine the relationships among movement, arousal state, and local field potential (LFP) activity in the Drosophila brain.RESULTS: We have measured the correlation between local field potentials (LFPs) in the brain and overt movements of the fruit fly during different states of arousal, such as spontaneous daytime waking movement, visual arousal, spontaneous night-time movement, and stimulus-induced movement. We found that the correlation strength between brain LFP activity and movement was dependent on behavioral state and, to some extent, on LFP frequency range. Brain activity and movement were uncoupled during the presentation of visual stimuli and also in the course of overnight experiments in the dark. Epochs of low correlation or uncoupling were predictive of increased arousal thresholds even in moving flies and thus define a distinct state of arousal intermediate between sleep and waking in the fruit fly.CONCLUSIONS: These experiments indicate that the relationship between brain LFPs and movement in the fruit fly is dynamic and that the degree of coupling between these two measures of activity defines distinct states of arousal.  相似文献   

7.
Low frequency stimulation of nucleus Ventralis Anterior thalami in unanesthetized rats elicits incremental responses and produces, in some conditions, characteristic behavioral reaction. Stimulation thresholds giving rise to behavioral reaction are higher than those allowing to find electrocortical responses. The analysis of their evolution discloses changes which are bound to both of the following parameters: the stimulation frequency and the arousal. The lowest behavioral thresholds are got at 8-10 c/s during relaxed wakefulness whereas the lowest electrocortical thresholds are found at 5-8 c/s during slow-wave sleep.  相似文献   

8.

Background

Hyperalgesia is a well recognized hallmark of disease. Pro-inflammatory cytokines have been suggested to be mainly responsible, but human data are scarce. Changes in pain threshold during systemic inflammation evoked by human endotoxemia, were evaluated with three quantitative sensory testing methods.

Methods and Results

Pressure pain thresholds, electrical pain thresholds and tolerance to the cold pressor test were measured before and 2 hours after the intravenous administration of 2 ng/kg purified E. coli endotoxin in 27 healthy volunteers. Another 20 subjects not exposed to endotoxemia served as controls. Endotoxemia led to a rise in body temperature and inflammatory symptom scores and a rise in plasma TNF-α, IL-6, IL-10 and IL-1RA. During endotoxemia, pressure pain thresholds and electrical pain thresholds were reduced with 20±4 % and 13±3 %, respectively. In controls only a minor decrease in pressure pain thresholds (7±3 %) and no change in electrical pain thresholds occurred. Endotoxin-treated subjects experienced more pain during the cold pressor test, and fewer subjects were able to complete the cold pressor test measurement, while in controls the cold pressor test results were not altered. Peak levels and area under curves of each individual cytokine did not correlate to a change in pain threshold measured by one of the applied quantitative sensory testing techniques.

Conclusions and Significance

In conclusion, this study shows that systemic inflammation elicited by the administration of endotoxin to humans, results in lowering of the pain threshold measured by 3 quantitative sensory testing techniques. The current work provides additional evidence that systemic inflammation is accompanied by changes in pain perception.  相似文献   

9.
With local thermal and mechanical stimulation in precise experiments on cats, a study was made of changes in impulse activity of afferent fibers of spinal dorsal roots connected with skin thermoreceptors in the extremities. Psychophysiological studies were done on the characteristics of thermosensitive points of the skin of the upper extremities of man. According to changes in average frequency of impulse activity, dynamic sensitivity, latent period of reaction, and thresholds of temperature and mechanical sensitivity, three groups of heat receptors and two of cold receptors were identified in the skin of the cat. All heat and cold receptors are mechanosensitive. According to quality and intensity of perceptions elicited by thermal stimulation and thresholds of sensitivity to mechanical and temperature effects, thermosensitive points in human skin can also be divided into three groups of heat receptors and two groups of cold receptors. All heat and cold points are mechanosensitive. An analogy between the skin thermoreceptors of animals and man is suggested.Institute of Physiology, Kazakhstan, Academy of Sciences. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 314–322, May–June, 1992.  相似文献   

10.
11.
Postsynaptic potentials of motoneurons of the masseter and digastric muscles evoked by stimulation of the infraorbital nerve with a strength of between 1 and 10 thresholds were investigated in cats anesthetized with a mixture of chloralose and pentobarbital. Depending on their ability to be activated by low-threshold afferents of this nerve, motoneurons of the masseter were divided into two groups. Stimuli with a strength of 1.2–2.5 times above threshold for the most excitable fibers of the infraorbital nerve evoked short-latency EPSPs in the motoneurons of the first group; a further increase in stimulus strength (3–9 thresholds) led to the appearance of IPSPs with latent periods of 2.8–3.5 msec. Motoneurons of the second group responded to stimulation of the infraorbital nerve with a strength of 3–9 thresholds by IPSPs whose latent periods varied from 6 to 8 msec. Stimuli below 3 thresholds in strength evoked no responses in these motoneurons. Stimulation of the infraorbital nerve with pulses of between 1 and 2 thresholds in strength evoked EPSPs in digastric motoneurons, but an increase in the strength of stimulation led to action potential generation. The presence of many excitatory and inhibitory inputs formed by afferent fibers of different types evidently provides a basis for functional diversity of jaw-opening and jaw-closing reflexes.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 596–603, November–December, 1980.  相似文献   

12.

Background

Repetitive transcranial magnetic stimulation (rTMS) at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a “virtual lesion” in stimulated brain regions, with correspondingly diminished behavioral performance.

Methodology/Principal Findings

Here we investigated the effects of rTMS to visual cortex on subjects'' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz) stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task.

Conclusions/Significance

Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.  相似文献   

13.
Can subjective belief about one''s own perceptual competence change one''s perception? To address this question, we investigated the influence of self-efficacy on sensory discrimination in two low-level visual tasks: contrast and orientation discrimination. We utilised a pre-post manipulation approach whereby two experimental groups (high and low self-efficacy) and a control group made objective perceptual judgments on the contrast or the orientation of the visual stimuli. High and low self-efficacy were induced by the provision of fake social-comparative performance feedback and fictional research findings. Subsequently, the post-manipulation phase was performed to assess changes in visual discrimination thresholds as a function of the self-efficacy manipulations. The results showed that the high self-efficacy group demonstrated greater improvement in visual discrimination sensitivity compared to both the low self-efficacy and control groups. These findings suggest that subjective beliefs about one''s own perceptual competence can affect low-level visual processing.  相似文献   

14.
BACKGROUND: Arousal levels in the brain set thresholds for behavior, from simple to complex. The mechanistic underpinnings of the various phenomena comprising arousal, however, are still poorly understood. Drosophila behaviors have been studied that span different levels of arousal, from sleep to visual perception to psychostimulant responses. RESULTS: We have investigated neurobiological mechanisms of arousal in the Drosophila brain by a combined behavioral, genetic, pharmacological, and electrophysiological approach. Administration of methamphetamine (METH) suppresses sleep and promotes active wakefulness, whereas an inhibitor of dopamine synthesis promotes sleep. METH affects courtship behavior by increasing sexual arousal while decreasing successful sexual performance. Electrophysiological recordings from the medial protocerebrum of wild-type flies showed that METH ingestion has rapid and detrimental effects on a brain response associated with perception of visual stimuli. Recordings in genetically manipulated animals show that dopaminergic transmission is required for these responses and that visual-processing deficits caused by attenuated dopaminergic transmission can be rescued by METH. CONCLUSIONS: We show that changes in dopamine levels differentially affect arousal for behaviors of varying complexity. Complex behaviors, such as visual perception, degenerate when dopamine levels are either too high or too low, in accordance with the inverted-U hypothesis of dopamine action in the mammalian brain. Simpler behaviors, such as sleep and locomotion, show graded responses that follow changes in dopamine level.  相似文献   

15.
Auditory cues can create the illusion of self-motion (vection) in the absence of visual or physical stimulation. The present study aimed to determine whether auditory cues alone can also elicit motion sickness and how auditory cues contribute to motion sickness when added to visual motion stimuli. Twenty participants were seated in front of a curved projection display and were exposed to a virtual scene that constantly rotated around the participant''s vertical axis. The virtual scene contained either visual-only, auditory-only, or a combination of corresponding visual and auditory cues. All participants performed all three conditions in a counterbalanced order. Participants tilted their heads alternately towards the right or left shoulder in all conditions during stimulus exposure in order to create pseudo-Coriolis effects and to maximize the likelihood for motion sickness. Measurements of motion sickness (onset, severity), vection (latency, strength, duration), and postural steadiness (center of pressure) were recorded. Results showed that adding auditory cues to the visual stimuli did not, on average, affect motion sickness and postural steadiness, but it did reduce vection onset times and increased vection strength compared to pure visual or pure auditory stimulation. Eighteen of the 20 participants reported at least slight motion sickness in the two conditions including visual stimuli. More interestingly, six participants also reported slight motion sickness during pure auditory stimulation and two of the six participants stopped the pure auditory test session due to motion sickness. The present study is the first to demonstrate that motion sickness may be caused by pure auditory stimulation, which we refer to as “auditorily induced motion sickness”.  相似文献   

16.
The present study investigated the effects of low cognitive workload and the absence of arousal induced via external physical stimulation (motion) on practice-related improvements in executive (inhibitory) control, short-term memory, metacognitive monitoring and decision making. A total of 70 office workers performed low and moderately engaging passenger tasks in two successive 20-minute simulated drives and repeated a battery of decision making and inhibitory control tests three times – before, between and after these drives. For half the participants, visual simulation was synchronised with (moderately arousing) motion generated through LAnd Motion Platform, with vibration levels corresponding to a well-maintained unsealed road. The other half performed the same simulated drive without motion. Participants’ performance significantly improved over the three test blocks, which is indicative of typical practice effects. The magnitude of these improvements was the highest when both motion and moderate cognitive load were present. The same effects declined either in the absence of motion (low arousal) or following a low cognitive workload task, thus suggesting two distinct pathways through which practice-related improvements in cognitive performance may be hampered. Practice, however, degraded certain aspects of metacognitive performance, as participants became less likely to detect incorrect decisions in the decision-making test with each subsequent test block. Implications include consideration of low cognitive load and arousal as factors responsible for performance decline and targets for the development of interventions/strategies in low load/arousal conditions such as autonomous vehicle operations and highway driving.  相似文献   

17.
Obstructive sleep apnea (OSA) is accompanied by brain injury, perhaps resulting from apnea-related hypoxia or periods of impaired cerebral perfusion. Perfusion changes can be determined indirectly by evaluation of cerebral blood volume and oxygenation alterations, which can be measured rapidly and non-invasively with the global blood oxygen level dependent (BOLD) signal, a magnetic resonance imaging procedure. We assessed acute BOLD responses in OSA subjects to pressor challenges that elicit cerebral blood flow changes, using a two-group comparative design with healthy subjects as a reference. We separately assessed female and male patterns, since OSA characteristics and brain injury differ between sexes. We studied 94 subjects, 37 with newly-diagnosed, untreated OSA (6 female (age mean ± std: 52.1±8.1 yrs; apnea/hypopnea index [AHI]: 27.7±15.6 events/hr and 31 male 54.3±8.4 yrs; AHI: 37.4±19.6 events/hr), and 20 female (age 50.5±8.1 yrs) and 37 male (age 45.6±9.2 yrs) healthy control subjects. We measured brain BOLD responses every 2 s while subjects underwent cold pressor, hand grip, and Valsalva maneuver challenges. The global BOLD signal rapidly changed after the first 2 s of each challenge, and differed in magnitude between groups to two challenges (cold pressor, hand grip), but not to the Valsalva maneuver (repeated measures ANOVA, p<0.05). OSA females showed greater differences from males in response magnitude and pattern, relative to healthy counterparts. Cold pressor BOLD signal increases (mean ± adjusted standard error) at the 8 s peak were: OSA 0.14±0.08% vs. Control 0.31±0.06%, and hand grip at 6 s were: OSA 0.08±0.03% vs. Control at 0.30±0.02%. These findings, indicative of reduced cerebral blood flow changes to autonomic challenges in OSA, complement earlier reports of altered resting blood flow and reduced cerebral artery responsiveness. Females are more affected than males, an outcome which may contribute to the sex-specific brain injury in the syndrome.  相似文献   

18.
There is broad consensus that the prefrontal cortex supports goal-directed, model-based decision-making. Consistent with this, we have recently shown that model-based control can be impaired through transcranial magnetic stimulation of right dorsolateral prefrontal cortex in humans. We hypothesized that an enhancement of model-based control might be achieved by anodal transcranial direct current stimulation of the same region. We tested 22 healthy adult human participants in a within-subject, double-blind design in which participants were given Active or Sham stimulation over two sessions. We show Active stimulation had no effect on model-based control or on model-free (‘habitual’) control compared to Sham stimulation. These null effects are substantiated by a power analysis, which suggests that our study had at least 60% power to detect a true effect, and by a Bayesian model comparison, which favors a model of the data that assumes stimulation had no effect over models that assume stimulation had an effect on behavioral control. Although we cannot entirely exclude more trivial explanations for our null effect, for example related to (faults in) our experimental setup, these data suggest that anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex does not improve model-based control, despite existing evidence that transcranial magnetic stimulation can disrupt such control in the same brain region.  相似文献   

19.
Three previous studies have shown that biofeedback training is useful in modifying heart-rate and pain ratings during ice water stimulation (cold pressor test). Subjects were given an initial cold pressor followed by heart-rate biofeedback training and a final cold pressor test in which they were instructed to control their heart rate in accordance with the prior training. It was assumed that a heart-rate control skill had been learned. In the present study, two groups of subjects (N = 9 each) were given either increase or decrease heart-rate biofeedback training following the same procedures as previously, but subjects were not instructed to control their heart rate during the final cold pressor test. Heart rate, skin conductance, electromyographic activity, and respiration were measured. The biofeedback training effects replicate the previous results. However, no heart-rate or pain rating differences were found between the two groups during the final cold pressor test. Thus, previous findings cannot be accounted for simply by a shift in heart rate and/or pain reactivity following training itself. The findings suggest that a biofeedback strategy may be useful in modifying physiological and subjective responses to painful stimuli but only if it can be used as an active coping skill.  相似文献   

20.
In the so-called rubber hand illusion, synchronous visuotactile stimulation of a visible rubber hand together with one''s own hidden hand elicits ownership experiences for the artificial limb. Recently, advanced virtual reality setups were developed to induce a virtual hand illusion (VHI). Here, we present functional imaging data from a sample of 25 healthy participants using a new device to induce the VHI in the environment of a magnetic resonance imaging (MRI) system. In order to evaluate the neuronal robustness of the illusion, we varied the degree of synchrony between visual and tactile events in five steps: in two conditions, the tactile stimulation was applied prior to visual stimulation (asynchrony of −300 ms or −600 ms), whereas in another two conditions, the tactile stimulation was applied after visual stimulation (asynchrony of +300 ms or +600 ms). In the fifth condition, tactile and visual stimulation was applied synchronously. On a subjective level, the VHI was successfully induced by synchronous visuotactile stimulation. Asynchronies between visual and tactile input of ±300 ms did not significantly diminish the vividness of illusion, whereas asynchronies of ±600 ms did. The temporal order of visual and tactile stimulation had no effect on VHI vividness. Conjunction analyses of functional MRI data across all conditions revealed significant activation in bilateral ventral premotor cortex (PMv). Further characteristic activation patterns included bilateral activity in the motion-sensitive medial superior temporal area as well as in the bilateral Rolandic operculum, suggesting their involvement in the processing of bodily awareness through the integration of visual and tactile events. A comparison of the VHI-inducing conditions with asynchronous control conditions of ±600 ms yielded significant PMv activity only contralateral to the stimulation site. These results underline the temporal limits of the induction of limb ownership related to multisensory body-related input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号