首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background

Multidrug resistant Klebsiella pneumoniae have caused major therapeutic problems worldwide due to the emergence of the extended-spectrum β-lactamase producing strains. Although there are >10 major facilitator super family (MFS) efflux pumps annotated in the genome sequence of the K. pneumoniae bacillus, apparently less is known about their physiological relevance.

Principal Findings

Insertional inactivation of kpnGH resulting in increased susceptibility to antibiotics such as azithromycin, ceftazidime, ciprofloxacin, ertapenem, erythromycin, gentamicin, imipenem, ticarcillin, norfloxacin, polymyxin-B, piperacillin, spectinomycin, tobramycin and streptomycin, including dyes and detergents such as ethidium bromide, acriflavine, deoxycholate, sodium dodecyl sulphate, and disinfectants benzalkonium chloride, chlorhexidine and triclosan signifies the wide substrate specificity of the transporter in K. pneumoniae. Growth inactivation and direct fluorimetric efflux assays provide evidence that kpnGH mediates antimicrobial resistance by active extrusion in K. pneumoniae. The kpnGH isogenic mutant displayed decreased tolerance to cell envelope stressors emphasizing its added role in K. pneumoniae physiology.

Conclusions and Significance

The MFS efflux pump KpnGH involves in crucial physiological functions besides being an intrinsic resistance determinant in K. pneumoniae.  相似文献   

2.

Background

Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity.

Methodology and Principal Findings

C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS.

Conclusions

These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains.  相似文献   

3.

Background

Pneumococcal infections cause major morbidity and mortality in developing countries. We report the epidemiology of S. pneumoniae carriage in a developing region, the Gaza strip, and evaluate the theoretical coverage of carriage strains by pneumococcal conjugate vaccines (PCVs).

Methodology

In 2009 we conducted a cross-sectional survey of S. pneumoniae carriage in healthy children and their parents, living throughout the Gaza strip. Data were collected and nasopharyngeal swabs were obtained. Antibiotic susceptibilities were determined by Vitek-2 and serotypes by the Quellung reaction.

Principal Findings

S. pneumoniae carriage was detected in 189/379 (50%) of children and 30/376 (8%) of parents. Carriage prevalence was highest in children <6 months of age (63%). Significant predictors for child carriage were number of household members and DCC attendance. The proportion of pediatric and adults isolates with serotypes included in PCV7 were 32% and 20% respectively, and 46% and 33% in PCV13 respectively. The most prominent non-vaccine serotypes (NVT) were 35B, 15B/C and 23B. Penicillin-nonsusceptible strains were carried by70% of carriers, penicillin-resistant strains (PRSP) by 13% and Multi-drug-resistant (MDR) by 30%. Of all PRSP isolates 54% belonged to serotypes included in PCV7 and 71% in the PCV13. Similarly, 59% and 73% of MDR-SP isolates, would theoretically be covered by PCV7 and PCV13, respectively.

Conclusions

This study demonstrates that, PCV13-included strains were carried by 46% and 33% of pediatric and adult subjects respectively. In the absence of definitive data regarding the virulence of the NVT strains, it is difficult to predict the effect of PCVs on IPD in this region.  相似文献   

4.

Background

Klebsiella pneumoniae is one of the major pathogens causing hospital-acquired multidrug-resistant infections. The capsular polysaccharide (CPS) is an important virulence factor of K. pneumoniae. With 78 capsular types discovered thus far, an association between capsular type and the pathogenicity of K. pneumoniae has been observed.

Methodology/Principal Findings

To investigate an initially non-typeable K. pneumoniae UTI isolate NTUH-K1790N, the cps gene region was sequenced. By NTUH-K1790N cps-PCR genotyping, serotyping and determination using a newly isolated capsular type-specific bacteriophage, we found that NTUH-K1790N and three other isolates Ca0507, Ca0421 and C1975 possessed a new capsular type, which we named KN2. Analysis of a KN2 CPS mutant confirmed the role of capsule as the target recognized by the antiserum and the phage. A newly described lytic phage specific for KN2 K. pneumoniae, named 0507-KN2-1, was isolated and characterized using transmission electron microscopy. Whole-genome sequencing of 0507-KN2-1 revealed a 159 991 bp double-stranded DNA genome with a G+C content of 46.7% and at least 154 open reading frames. Based on its morphological and genomic characteristics, 0507-KN2-1 was classified as a member of the Myoviridae phage family. Further analysis of this phage revealed a 3738-bp gene encoding a putative polysaccharide depolymerase. A recombinant form of this protein was produced and assayed to confirm its enzymatic activity and specificity to KN2 capsular polysaccharides. KN2 K. pneumoniae strains exhibited greater sensitivity to this depolymerase than these did to the cognate phage, as determined by spot analysis.

Conclusions/Significance

Here we report that a group of clinical strains possess a novel Klebsiella capsular type. We identified a KN2-specific phage and its polysaccharide depolymerase, which could be used for efficient capsular typing. The lytic phage and depolymerase also have potential as alternative therapeutic agents to antibiotics for treating K. pneumoniae infections, especially against antibiotic-resistant strains.  相似文献   

5.

Background

In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification.

Methods

Specific peaks in the outbreak strain’s spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak.

Results

Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates.

Conclusions

MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow.  相似文献   

6.

Background and Aims

Neonatal infections caused by Extended-spectrum beta-lactamase (ESBL)-producing bacteria are associated with increased morbidity and mortality. No data are available on neonatal colonization with ESBL-producing bacteria in Ecuador. The aim of this study was to determine the proportion of intestinal colonization with ESBL-producing Enterobacteriaceae, their resistance pattern and risk factors of colonization in a neonatal intensive care unit in Ecuador.

Methods

During a three month period, stool specimens were collected every two weeks from hospitalized neonates. Species identification and susceptibility testing were performed with Vitek2, epidemiologic typing with automated repetitive PCR. Associations between groups were analyzed using the Pearson X 2 test and Fisher exact test. A forward step logistic regression model identified significant predictors for colonization.

Results

Fifty-six percent of the neonates were colonized with ESBL-producing Enterobacteriaceae. Length of stay longer than 20 days and enteral feeding with a combination of breastfeeding and formula feeding were significantly associated with ESBL-colonization. The strains found were E. coli (EC, 89%) and K. pneumoniae (KP, 11%) and epidemiological typing divided these isolates in two major clusters. All EC and KP had bla CTX-M group 1 except for a unique EC isolate that had bla CTX-M group 9. Multi-locus sequence typing performed on the K. pneumoniae strains showed that the strains belonged to ST855 and ST897. The two detected STs belong to two different epidemic clonal complexes (CC), CC11 and CC14, which previously have been associated with dissemination of carbapenemases. None of the E. coli strains belonged to the epidemic ST 131 clone.

Conclusions

More than half of the neonates were colonized with ESBL-producing Enterobacteriaceae where the main risk factor for colonization was length of hospital stay. Two of the isolated clones were epidemic and known to disseminate carbapenemases. The results underline the necessity for improved surveillance and infection control in this context.  相似文献   

7.

Background

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) allows rapid and reliable identification of microorganisms, particularly clinically important pathogens.

Methodology/Principal Findings

We compared the identification efficiency of MALDI-TOF MS with that of Phoenix®, API® and 16S ribosomal DNA sequence analysis on 1,019 strains obtained from routine diagnostics. Further, we determined the agreement of MALDI-TOF MS identifications as compared to 16S gene sequencing for additional 545 strains belonging to species of Enterococcus, Gardnerella, Staphylococcus, and Streptococcus. For 94.7% of the isolates MALDI-TOF MS results were identical with those obtained with conventional systems. 16S sequencing confirmed MALDI-TOF MS identification in 63% of the discordant results. Agreement of identification of Gardnerella, Enterococcus, Streptococcus and Staphylococcus species between MALDI-TOF MS and traditional method was high (Crohn''s kappa values: 0.9 to 0.93).

Conclusions/Significance

MALDI-TOF MS represents a rapid, reliable and cost-effective identification technique for clinically relevant bacteria.  相似文献   

8.

Objectives

There is a large spectrum of viral, bacterial, fungal, and prion pathogens that cause central nervous system (CNS) infections. As such, identification of the etiological agent requires multiple laboratory tests and accurate diagnosis requires clinical and epidemiological information. This hospital-based study aimed to determine the main causes of acute meningitis and encephalitis and enhance laboratory capacity for CNS infection diagnosis.

Methods

Children and adults patients clinically diagnosed with meningitis or encephalitis were enrolled at four reference health centers. Cerebrospinal fluid (CSF) was collected for bacterial culture, and in-house and multiplex RT-PCR testing was conducted for herpes simplex virus (HSV) types 1 and 2, mumps virus, enterovirus, varicella zoster virus (VZV), Streptococcus pneumoniae, HiB and Neisseria meningitidis.

Results

Out of 140 enrolled patients, the mean age was 23.9 years, and 58% were children. Bacterial or viral etiologies were determined in 51% of patients. Five Streptococcus pneumoniae cultures were isolated from CSF. Based on in-house PCR analysis, 25 patients were positive for S. pneumoniae, 6 for N. meningitidis, and 1 for H. influenzae. Viral multiplex PCR identified infections with enterovirus (n = 26), VZV (n = 4), and HSV-1 (n = 2). No patient was positive for mumps or HSV-2.

Conclusions

Study findings indicate that S. pneumoniae and enteroviruses are the main etiologies in this patient cohort. The utility of molecular diagnostics for pathogen identification combined with the knowledge provided by the investigation may improve health outcomes of CNS infection cases in Georgia.  相似文献   

9.

Background

Cutaneous leishmaniasis is caused by several Leishmania species that are associated with variable outcomes before and after therapy. Optimal treatment decision is based on an accurate identification of the infecting species but current methods to type Leishmania isolates are relatively complex and/or slow. Therefore, the initial treatment decision is generally presumptive, the infecting species being suspected on epidemiological and clinical grounds. A simple method to type cultured isolates would facilitate disease management.

Methodology

We analyzed MALDI-TOF spectra of promastigote pellets from 46 strains cultured in monophasic medium, including 20 short-term cultured isolates from French travelers (19 with CL, 1 with VL). As per routine procedure, clinical isolates were analyzed in parallel with Multilocus Sequence Typing (MLST) at the National Reference Center for Leishmania.

Principal Findings

Automatic dendrogram analysis generated a classification of isolates consistent with reference determination of species based on MLST or hsp70 sequencing. A minute analysis of spectra based on a very simple, database-independent analysis of spectra based on the algorithm showed that the mutually exclusive presence of two pairs of peaks discriminated isolates considered by reference methods to belong either to the Viannia or Leishmania subgenus, and that within each subgenus presence or absence of a few peaks allowed discrimination to species complexes level.

Conclusions/Significance

Analysis of cultured Leishmania isolates using mass spectrometry allows a rapid and simple classification to the species complex level consistent with reference methods, a potentially useful method to guide treatment decision in patients with cutaneous leishmaniasis.  相似文献   

10.

Background

Complicated urinary tract infections (c-UTIs) are among the most common nosocomial infections and a substantial part of the antimicrobial agents used in hospitals is for the treatment of c-UTIs. Data from surveillance can be used to guide the empirical treatment choices of clinicians when treating c-UTIs. We therefore used nation-wide surveillance data to evaluate antimicrobial coverage of agents for the treatment of c-UTI in the Netherlands.

Methods

We included the first isolate per patient of urine samples of hospitalised patients collected by the Infectious Disease Surveillance Information System for Antibiotic Resistance (ISIS-AR) in 2012, and determined the probability of inadequate coverage for antimicrobial agents based on species distribution and susceptibility. Analyses were repeated for various patient groups and hospital settings.

Results

The most prevalent bacteria in 27,922 isolates of 23,357 patients were Escherichia coli (47%), Enterococcus spp. (14%), Proteus mirabilis (8%), and Klebsiella pneumoniae (7%). For all species combined, the probability of inadequate coverage was <5% for amoxicillin or amoxicillin-clavulanic acid combined with gentamicin and the carbapenems. When including gram-negative bacteria only, the probability of inadequate coverage was 4.0%, 2.7%, 2.3% and 1.7%, respectively, for amoxicillin, amoxicillin-clavulanic acid, a second or a third generation cephalosporin in combination with gentamicin, and the carbapenems (0.4%). There were only small variations in results among different patient groups and hospital settings.

Conclusions

When excluding Enterococcus spp., considered as less virulent, and the carbapenems, considered as last-resort drugs, empirical treatment for c-UTI with the best chance of adequate coverage are one of the studied beta-lactam-gentamicin combinations. This study demonstrates the applicability of routine surveillance data for up-to-date clinical practice guidelines on empirical antimicrobial therapy, essential in patient care given the evolving bacterial susceptibility.  相似文献   

11.

Objectives

The study aimed to investigate the prevalence and epidemiological characteristics of bla NDM-1 (encoding New Delhi metallo-β-lactamase 1) in Enterobacteriaceae and the Acinetobacter calcoaceticus-Acinetobacter baumannii complex (ABC) in China from July 2011 to June 2012.

Methods

PCR was used to screen for the presence of bla NDM-1 in all organisms studied. For bla NDM-1-positive strains, 16S rRNA analysis and Analytical Profile Index (API) strips were used to identify the bacterial genus and species. The ABCs were reconfirmed by PCR detection of bla OXA-51-like. Antibiotic susceptibilities of the bacteria were assessed by determining minimum inhibitory concentration (MIC) of them using two-fold agar dilution test, as recommended by the Clinical and Laboratory Standards Institute (CLSI). Molecular typing was performed using pulsed-field gel electrophoresis (PFGE). S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE) and Southern blot hybridization were conducted to ascertain the gene location of bla NDM-1. Conjugation experiments were conducted to determine the transmission of bla NDM-1-positive strains.

Results

Among 2,170 Enterobacteriaceae and 600 ABCs, seven Enterobacteriaceae strains and two A. calcoaceticus isolates from five different cities carried the bla NDM-1 gene. The seven Enterobacteriaceae strains comprised four Klebsiella pneumoniae, one Enterobacter cloacae, one Enterobacter aerogen and one Citrobacter freundii. All seven were non-susceptible to imipenem, meropenem or ertapenem. Two A. calcoaceticus species were resistant to imipenem and meropenem. Three K. pneumoniae showed the same PFGE profiles. The bla NDM-1 genes of eight strains were localized on plasmids, while one was chromosomal.

Conclusions

Compared with previous reports, the numbers and species containing the bla NDM-1 in Enterobacteriaceae have significantly increased in China. Most of them are able to disseminate the gene, which is cause for concern. Consecutive surveillance should be implemented and should also focus on the dissemination of bla NDM-1 among gram-negative clinical isolates.  相似文献   

12.

Background

Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health.

Methodology/Principal Findings

Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae.

Conclusions/Significance

Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.  相似文献   

13.

Background

Mycoplasma pneumoniae is a common pathogen that causes upper and lower respiratory tract infections in people of all ages, responsible for up to 40 % of community-acquired pneumonias. It also causes a wide array of extrapulmonary infections and autoimmune phenomena. Phylogenetic studies of the organism have been generally restricted to specific genes or regions of the genome, because whole genome sequencing has been completed for only 4 strains. To better understand the physiology and pathogenicity of this important human pathogen, we performed comparative genomic analysis of 15 strains of M. pneumoniae that were isolated between the 1940s to 2009 from respiratory specimens and cerebrospinal fluid originating from the USA, China and England.

Results

Illumina MiSeq whole genome sequencing was performed on the 15 strains and all genome sequences were completed. Results from the comparative genomic analysis indicate that although about 1500 SNP and indel variants exist between type1 and type 2 strains, there is an overall high degree of sequence similarity among the strains (>99 % identical to each other). Within the two subtypes, conservation of most genes, including the CARDS toxin gene and arginine deiminase genes, was observed. The major variation occurs in the P1 and ORF6 genes associated with the adhesin complex. Multiple hsdS genes (encodes S subunit of type I restriction enzyme) with variable tandem repeat copy numbers were found in all 15 genomes.

Conclusions

These data indicate that despite conclusions drawn from 16S rRNA sequences suggesting rapid evolution, the M. pneumoniae genome is extraordinarily stable over time and geographic distance across the globe with a striking lack of evidence of horizontal gene transfer.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1801-0) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Whole-cell matrix–assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been successfully applied for bacterial identification and typing of many pathogens. The fast and reliable qualities of MALDI-TOF MS make it suitable for clinical diagnostics. MALDI-TOF MS for the identification and cluster analysis of Streptococcus pyogenes, however, has not been reported. The goal of our study was to evaluate this approach for the rapid identification and typing of S. pyogenes.

Methods

65 S. pyogenes isolates were obtained from the hospital. The samples were prepared and MALDI-TOF MS measurements were conducted as previously reported. Identification of unknown spectra was performed via a pattern recognition algorithm with a reference spectra and a dendrogram was constructed using the statistical toolbox in Matlab 7.1 integrated in the MALDI Biotyper 2.0 software.

Results

For identification, 61 of 65 S. pyogenes isolates could be identified correctly by MALDI-TOF MS with BioType 2.0 when compared to biochemical identification (API Strep), with an accuracy of 93.85%. In clustering analysis, 44 of 65 isolates were in accordance with those established by M typing, with a matching rate of 67.69%. When only the M type prevalence in China was considered, 41 of 45 isolates were in agreement with M typing, with a matching rate of 91.1%.

Conclusions

It was here shown that MALDI-TOF MS with Soft Biotype 2.0 and its database could facilitate rapid identification of S. pyogenes. It may present an attractive alternative to traditional biochemical methods of identification. However, for classification, more isolates and advances in the MALDI-TOF MS technology are needed to improve accuracy.  相似文献   

15.

Background

Klebsiella pneumoniae is a clinically significant species of bacterium which causes a variety of diseases. Clinical treatment of this bacterial infection is greatly hindered by the emergence of multidrug-resistant strains. The resistance is largely due to the acquisition of plasmids carrying drug-resistant as well as pathogenic genes, and its conjugal transfer facilitates the spread of resistant phenotypes.

Methodology/Principal Findings

The 70,057 bp plasmid pKF3-70, commonly found in Klebsiella pneumoniae, is composed of five main functional modules, including regions involved in replication, partition, conjugation, transfer leading, and variable regions. This plasmid is more similar to several Escherichia coli plasmids than any previously reported K. pneumoniae plasmids and pKF3-70 like plasmids share a common and conserved backbone sequence. The replication system of the pKF3-70 is 100% identical to that of RepFII plasmid R100 from E. coli. A beta-lactamase gene ctx-m-14 with its surrounding insertion elements (ISEcp1, truncated IS903 and a 20 bp inverted repeat sequence) may compose an active transposon which is directly bordered by two putative target repeats “ATTAC.”

Conclusions/Significance

The K. pneumoniae plasmid pKF3-70 carries an extended-spectrum beta-lactamase gene, ctx-m-14. The conjugative characteristic makes it a widespread plasmid among genetically relevant genera which poses significant threat to public health.  相似文献   

16.

Background

The genetic diversity and the clinical relevance of the drug-resistant Klebsiella pneumoniae isolates from hospital settings are largely unknown. We thus conducted this prospective study to analyze the molecular epidemiology of K. pneumoniae isolates from patients being treated in the 306 Hospital in Beijing, China for the period of November 1, 2010–October 31, 2011.

Methodology/Principal Findings

Antibiotic susceptibility testing, PCR amplification and sequencing of the drug resistance-associated genes, and multilocus sequence typing (MLST) were conducted. A total of 163 isolates were analyzed. The percentage of MDR, XDR and PDR isolates were 63.8% (104), 20.9 (34), and 1.8% (3), respectively. MLST results showed that 60 sequence types (STs) were identified, which were further separated by eBURST into 13 clonal complexes and 18 singletons. The most dominant ST was ST15 (10.4%). Seven new alleles and 24 new STs were first identified in this study. Multiple logistic regression analysis revealed that certain clinical characteristics were associated with those prevalent STs such as: from ICU, from medical ward, from community acquired infection, from patients without heart disease, from patients with treatment success, susceptible to extended spectrum cephalosporin, susceptible to cephamycins, susceptible to fluoroquinolones, and with MDR.

Conclusions/Significance

Our data indicate that certain drug-resistant K. pneumoniae clones are highly prevalent and are associated with certain clinical characteristics in hospital settings. Our study provides evidence demonstrating that intensive nosocomial infection control measures are urgently needed.  相似文献   

17.

Objective

The serotypes and patterns of antibiotic resistance of Streptococcus pneumoniae (S. pneumoniae) strains that cause invasive pneumococcal disease (IPD) in infants were analyzed to provide guidance for clinical disease prevention and treatment.

Methods

The clinical features of confirmed IPD were evaluated in 61 patients, less than 5 years of age, who were admitted to our hospital between January 2009 and December 2011. The serotypes and antibiotic resistance of strains of S.pneumoniae were determined using the capsular swelling method and the E-test.

Results

A total of 61 invasive strains were isolated. The serotype distribution of those isolates were 19A (41.0%), 14 (19.7%), 19F (11.5%), 23F (9.8%), 8 (4.9%), 9V (4.9%), 1 (3.3%), and 4, 6B, and 20 (each 1.6%). The percentage of S. pneumoniae strains resistant to erythromycin, clindamycin, and cotrimoxazole were 100%, 86.9%, and 100%, respectively. The percentage of S. pneumoniae strains resistant to penicillin, amoxicillin/clavulanic acid, cefuroxime, ceftriaxone, cefotaxime, cefepime, and meropenem were 42.6%, 18.0%, 82.0%, 18.0%, 13.1%, 13.1%, and 36.1%, respectively. The percentage of multidrug-resistant strains was 95.6%. Strains of all serotypes isolated in this study were highly resistant to erythromycin, cotrimoxazole, and clindamycin. Strains with serotype 19A had the highest rates of resistance.

Conclusions

Serotype 19A strains were most frequently isolated from children with IPD treated in our hospital. The strains causing IPD are highly resistant to antibiotics.  相似文献   

18.
19.

Background

Bacterial colonization and recurrent infections of the respiratory tract contribute to the progression of chronic obstructive pulmonary disease (COPD). There is evidence that exacerbations of COPD are provoked by new bacterial strains acquired from the environment. Using a murine model of colonization, we examined whether chronic exposure to cigarette smoke (CS) promotes nasopharyngeal colonization with typical lung pathogens and whether colonization is linked to inflammation in the respiratory tract.

Methods

C57BL/6 N mice were chronically exposed to CS. The upper airways of mice were colonized with nontypeable Haemophilus influenzae (NTHi) or Streptococcus pneumoniae. Bacterial colonization was determined in the upper respiratory tract and lung tissue. Inflammatory cells and cytokines were determined in lavage fluids. RT-PCR was performed for inflammatory mediators.

Results

Chronic CS exposure resulted in significantly increased numbers of viable NTHi in the upper airways, whereas NTHi only marginally colonized air-exposed mice. Colonization with S. pneumoniae was enhanced in the upper respiratory tract of CS-exposed mice and was accompanied by increased translocation of S. pneumoniae into the lung. Bacterial colonization levels were associated with increased concentrations of inflammatory mediators and the number of immune cells in lavage fluids of the upper respiratory tract and the lung. Phagocytosis activity was reduced in whole blood granulocytes and monocytes of CS-exposed mice.

Conclusions

These findings demonstrate that exposure to CS impacts the ability of the host to control bacterial colonization of the upper airways, resulting in enhanced inflammation and susceptibility of the host to pathogens migrating into the lung.  相似文献   

20.

Background

Statin treatment has been associated with a beneficial outcome on respiratory tract infections. In addition, previous in vitro and in vivo experiments have indicated favorable effects of statins in bacterial infections.

Aim

The aim of the present study was to elucidate possible antibacterial effects of statins against primary pathogens of the respiratory tract.

Methods

MIC-values for simvastatin, fluvastatin and pravastatin against S. pneumoniae, M. catarrhalis and H. influenzae were determined by traditional antibacterial assays. A BioScreen instrument was used to monitor effects of statins on bacterial growth and to assess possible synergistic effects with penicillin. Bacterial growth in whole blood and serum from healthy volunteers before and after a single dose of simvastatin, fluvastatin and penicillin (positive control) was determined using a blood culture system (BactAlert).

Findings

The MIC-value for simvastatin against S pneumoniae and M catarrhalis was 15 µg/mL (36 mmol/L). Fluvastatin and Pravastatin showed no antibacterial effect in concentrations up to 100 µg/mL (230 µmol/L). Statins did not affect growth or viability of H influenzae. Single doses of statins given to healthy volunteers did not affect growth of pneumococci, whereas penicillin efficiently killed all bacteria.

Conclusions

Simvastatin at high concentrations 15 µg/mL (36 µmol/L) rapidly kills S pneumoniae and M catarrhalis. However, these concentrations by far exceed the concentrations detected in human blood during simvastatin therapy (1–15 nmol/L) and single doses of statins given to healthy volunteers did not improve antibacterial effects of whole blood. Thus, a direct bactericidal effect of statins in vivo is probably not the mechanism behind the observed beneficial effect of statins against various infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号