首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
《Genomics》2021,113(6):3735-3749
Germination and seedling growth are crucial for plant development and agricultural production. While, the regulatory mechanisms during these processes in Tibetan hulless barley (Hordeum vulgare L. var. nudum) are not well understood. Given the regulatory roles of microRNAs (miRNAs) in crop plants and the irreplaceability of barley in the highland area of China, we herein presented a genome-wide survey of miRNAs to reveal a potential regulatory network in the early developmental stages of two Tibetan hulless barleys, from which a total of 156 miRNAs was identified including 35 known and 121 novel ones. Six of the identified novel miRNAs were further experimentally validated. According to the evolutionary analysis, miR156, miR166, miR168, and miR171 were conserved across Tibetan hulless barleys and eight other seed plants. Expression profiles of ten known miRNAs showed that they were involved in phytohormone signaling, carbohydrate and lipid metabolism, as well as juvenile-adult transition during barley development. Moreover, a total of 1280 genes targeted by 101 miRNAs were predicted from both barley libraries. Three genes (PLN03212, MATE eukaryotic, and GRAS) were validated via the RNA ligase-mediated 5′-rapid amplification of cDNA ends (RLM-5' RACE) to be the targets of hvu-miR159a, hvu-miR166a, and hvu-miR171-3p, respectively. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of putative targets, the most abundant pathways were related to “metabolism”.These results revealed that miRNA-target pairs participating in the regulation of multigene expression and the embryonic development of Tibetan hulless barleys were controlled by complex mechanisms involving the concordant expression of different miRNAs and feedback loops among miRNAs as well as their targets. The study provides insight into the regulatory network of barley miRNAs for better understanding of miRNA functions during germination and seedling growth.  相似文献   

4.
5.
6.
7.
MicroRNAs (miRNAs) are an important gene regulator, controlling almost all biological and metabolic processes, in both plants and animals. In this study, we investigated the effect of drought and salinity stress on the expression of miRNAs and their targets in cotton (Gossypium hirsutum L.). Our results show that the expression change of miRNAs and their targets were dose-dependent and tissue-dependent under salinity and drought conditions. The expression of miRNAs in leaf was down-regulated under higher salinity stress while shows variable patterns in other conditions. The highest fold-changes of miRNAs were miR398 in roots with 28.9 fold down-regulation under 0.25% NaCl treatment and miR395 in leaves with 7.6 fold down-regulation under 1% PEG treatment. The highest up-regulation of miRNA targets was AST in roots with 4.7 fold-change under 2.5% PEG and the gene with highest down-regulation was CUC1 in leaves with 25.6 fold-change under 0.25% NaCl treatment. Among seven miRNA-target pairs we studied, five pairs, miR156–SPL2, miR162–DCL1, miR159–TCP3, miR395–APS1 and miR396–GRF1, show significant regulation relationship in roots and leaves under salinity stress concentration.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Somatic cells respond to considerable stress, and go through a series of phytohormone pathways, then forming an embryo. The developmental process is recorded as somatic embryogenesis (SE). One of the key components regulating SE are the microRNAs (miRNAs). Despite previous studies, it is still not clear exactly how miRNAs exert their function of regulating targets during conditionally activated early SE. Here, we use Liriodendron sino-americanum as a model system and perform a combined analysis of microfluidic chips and degradome sequencing to study this process. We identified a total of 386 conserved miRNAs and 153 novel miRNAs during early SE. According to the ANOVA test, 239 miRNAs showed 12 distinct expression patterns. Through degradome sequencing, 419 targets and 198 targets were identified for 136 known miRNAs and 37 novel miRNAs, respectively. Gene Ontology (GO) and metabolism pathway enrichment analysis revealed that these targets were significantly involved in oxidation-reduction processes, calmodulin-mediated signal transduction pathways and carbohydrate metabolism. The genes that were related to stress responses, phytohormone pathways and plant metabolism were identified within the targets of miR319, miR395, miR408, miR472, miR482, miR390, miR2055, miR156, miR157, miR171, miR396, miR397, miR529, miR535 and miR159. According to promoter analysis, various cis-acting elements related to plant growth and development, phytohormones response and stress response were present in the promoter of the miRNAs. The differential expression patterns of 11 miRNA-target modules were confirmed by real-time quantitative PCR. The study demonstrated that the miRNA plays an important role in the early SE process by regulating its target and then participating in carbohydrate metabolism and stress response. It also provided a valuable resource for further research in determining the genetic mechanism of SE, and then facilitating breeding programs on plants.  相似文献   

15.
16.
MicroRNAs (miRNAs) have recently emerged as important regulators of gene expression in plants. Many miRNA families and their targets have been extensively studied in model species and major crops. We have characterized mature miRNAs along with their precursors and potential targets in Hypericum to generate a comprehensive list of conserved miRNA families and to investigate the regulatory role of selected miRNAs in biological processes that occur in the flower. St. John’s wort (Hypericum perforatum L., 2n = 4x = 32), a medicinal plant that produces pharmaceutically important metabolites with therapeutic activities, was chosen because it is regarded as an attractive model system for the study of apomixis. A computational in silico prediction of structure, in combination with an in vitro validation, allowed us to identify 7 pre-miRNAs, including miR156, miR166, miR390, miR394, miR396, and miR414. We demonstrated that H. perforatum flowers share highly conserved miRNAs and that these miRNAs potentially target dozens of genes with a wide range of molecular functions, including metabolism, response to stress, flower development, and plant reproduction. Our analysis paves the way toward identifying flower-specific miRNAs that may differentiate the sexual and apomictic reproductive pathways.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号