首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na+ channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on.  相似文献   

2.
Abstract— The activity of glutamate decarboxylase in the brain of rats during and prior to experimentally produced cerebral seizures was compared with that of control rats. An inhibition of enzyme activity during the tonic convulsions after intracisternal injection of l -glutamate or pyridoxal-5-phosphate, after audiogenic stimulation, after intraperitoneal injection of pentamethylenetetrazole and during the electroshock could be observed. During the preconvulsive stage the enzyme was strongly inhibited after an intracisternal injection of l -glutamate, l -aspartate, and after audiogenic stimulation. Only after the intracisternal injection of pyridoxal-5-phosphate the enzyme activity as compared with that of control rats was unchanged. The different effects of l -glutamate and pyridoxal-5-phosphate in vivo and in vitro on the glutamate decarboxylase are pointed out in particular. The inhibition of this enzyme in vivo is believed to be one of the possible causes of cerebral seizures.  相似文献   

3.
Ca2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s) remain ill defined. Here, we show that acidosis activates Ca2+ -permeable acid-sensing ion channels (ASICs), inducing glutamate receptor-independent, Ca2+ -dependent, neuronal injury inhibited by ASIC blockers. Cells lacking endogenous ASICs are resistant to acid injury, while transfection of Ca2+ -permeable ASIC1a establishes sensitivity. In focal ischemia, intracerebroventricular injection of ASIC1a blockers or knockout of the ASIC1a gene protects the brain from ischemic injury and does so more potently than glutamate antagonism. Thus, acidosis injures the brain via membrane receptor-based mechanisms with resultant toxicity of [Ca2+]i, disclosing new potential therapeutic targets for stroke.  相似文献   

4.
Stroke results in inflammation, brain edema, and neuronal death. However, effective neuroprotectants are not available. Recent studies have shown that high mobility group box-1 (HMGB1), a proinflammatory cytokine, contributes to ischemic brain injury. Aquaporin 4 (AQP4), a water channel protein, is considered to play a pivotal role in ischemia-induced brain edema. More recently, studies have shown that pannexin 1 channels are involved in cerebral ischemic injury and the cellular inflammatory response. Here, we examined whether the pannexin 1 channel inhibitor probenecid could reduce focal ischemic brain injury by inhibiting cerebral inflammation and edema. Transient focal ischemia was induced in C57BL/6J mice by middle cerebral artery occlusion (MCAO) for 1 h. Infarct volume, neurological score and cerebral water content were evaluated 48 h after MCAO. Immunostaining, western blot analysis and ELISA were used to assess the effects of probenecid on the cellular inflammatory response, HMGB1 release and AQP4 expression. Administration of probenecid reduced infarct size, decreased cerebral water content, inhibited neuronal death, and reduced inflammation in the brain 48 h after stroke. In addition, HMGB1 release from neurons was significantly diminished and serum HMGB1 levels were substantially reduced following probenecid treatment. Moreover, AQP4 protein expression was downregulated in the cortical penumbra following post-stroke treatment with probenecid. These results suggest that probenecid, a powerful pannexin 1 channel inhibitor, protects against ischemic brain injury by inhibiting cerebral inflammation and edema.  相似文献   

5.
Oka M  Itoh Y  Ukai Y 《Life sciences》2000,67(19):2331-2343
The role of Na+ and Ca2+ channels in glutamate-mediated hypoxic injury was investigated in slices of the rat cerebral cortex. Hypoxic injury was determined by mitochondrial reduction of 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyltetrazolium bromide after exposure of brain slices to 30-min of hypoxia/glucose deprivation followed by 3-h of reoxygenation. Endogenous glutamate release was markedly elevated during hypoxia/glucose deprivation, but it returned almost to basal level during reoxygenation. Hypoxic injury was prevented by MK-801 or 6-cyano-7-nitroquinoxaline-2,3-dione. Combined treatment with omega-conotoxin GVIA, omega-agatoxin IVA, and tetrodotoxin reversed the hypoxic injury, although none of these agents alone or nifedipine was effective. Moreover, a novel Na+/Ca2+ channel blocker NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy) pyrimidine hydrochloride] significantly inhibited the hypoxic injury. Several inhibitors of nitric oxide synthase also blocked the hypoxic injury. Consistently, nitric oxide synthesis, as estimated from cyclic GMP formation in the extracellular fluids, was enhanced during hypoxia/glucose deprivation. NS-7 and other Na+ and Ca2+ channel blockers suppressed the enhancement of nitric oxide synthesis, although these compounds alone, or in combination, did not reduce hypoxic glutamate release. These findings suggest that hypoxic injury in rat cerebrocortical slices is triggered by glutamate and subsequent enhancement of nitric oxide synthesis through activation of both Na+ and Ca2+ channels. Thus, the simultaneous blockade of both Na+ channel as well as N-type and P/Q-type Ca2+ channels is required to sufficiently reverse the hypoxic injury.  相似文献   

6.
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a−/− mice and found reduced neurodegeneration after FPI. Both HCO3 administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI.  相似文献   

7.
Acidosis is a common feature of many neuronal diseases and often accompanied with adverse consequences such as pain and neuronal injury. Before the discovery of acid-sensing ion channels (ASICs), protons were usually considered as a modulator of other ion channels, such as voltage-gated calcium channels, N-methyl-d-aspartate, and γ-amino butyric acid(A) receptor channels. Accordingly, the functional effects of acidosis were considered as consequences of modulations of these channels. Since the first cloning of ASICs in 1997, the conventional view on acidosis-mediated pain and cell injury has been dramatically changed. To date, ASICs, which are directly activated by extracellular protons, are shown to mediate most of the acidosis-associated physiological and pathological functions. For example, ASIC1a channels are reported to mediate acidosis-induced ischemic neuronal death. In this article, we will review the possible mechanisms that underlie ASIC1a channel-mediated neuronal death and discuss ASIC1a channel modulators involved in this process.  相似文献   

8.
经典瞬时受体电位3(transient receptor potential canonical 3,TRPC3)通道是胎儿期和围生期中枢神经系统中广泛表达的非特异性阳离子通道,参与体内众多生理和病理过程。有研究证明,TRPC3通道是细胞内钙稳态的重要调节者,调节包括细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)通路在内的多条钙敏感胞内信号转导通路的活性,最终影响神经元的生存或死亡。但TRPC3通道在新生动物缺氧缺血性脑损伤(hypoxic- ischemic brain damage,HIBD)模型中的作用及其机制尚未见报道。本研究取新生7 d的SD大鼠,采用右侧颈总动脉结扎和缺氧(8% O2)2~5 h制备HIBD模型,观察腹腔注射选择性TRPC3阻断剂pyr3(5 mg/kg和20 mg/kg)对缺氧缺血处理后,急性期和长期神经行为学及脑组织损伤程度的影响。神经功能缺损评分和平衡木实验结果显示,用pyr3特异性阻断TRPC3可恶化缺氧缺血大鼠的神经行为学障碍;脑组织含水量检测、TTC染色和患/健侧脑重比等结果显示,pyr3可加重脑水肿,增加脑组织梗死区体积和加重脑萎缩程度。Western印迹实验显示,缺氧缺血可以导致患侧脑组织ERK1/2磷酸化水平一过性升高,阻断TRPC3可以显著抑制ERK1/2的磷酸化,并可上调促凋亡蛋白BAX和下调抗凋亡蛋白BCL-2的表达。上述结果证明,阻断TRPC3通道可以加重新生大鼠的缺氧缺血性脑损伤,其机制可能与其对ERK信号通路活性的调节作用有关,因此可能成为HIBD治疗的潜在作用靶点。  相似文献   

9.
In freely moving cats the behavioral and EEG-shifts, accompanied by myoclonic jerks with slow negative waves and spike-wave complexes in the cortexand caudate nucleus, were recorded following a single intramuscular injection of high penicillin doses. The stimulants of catecholaminergic transmission (L-DOPA and apomorphine) inhibited the development of such phenomena but facilitated origination of tonicoclonic cramps. The inhibitors of catecholaminergic synapses (aminazin and haloperidol) exerted reverse effects. The electrolytic injury to the caudate nucleus head also prevented formation of petit mal-like seizures while the threshold low-frequency stimulation of the nucleus increased penicillin effect.  相似文献   

10.
Ischemia and seizures are common diseases that result in neuronal death. To-date, there are no available treatments to block or reverse neuronal death pathways in patients who suffer from these diseases. All drugs that have been shown to be neuroprotective in animal models have failed in human trials. Therefore, the potential of preventative strategies for therapy is increasingly explored. Experimental studies have demonstrated that a brief cerebral ischemic insult, that is not harmful by itself, results in a temporary protective adaptation in the brain against a subsequent ischemic episode that would otherwise be lethal. This process, termed ischemic preconditioning, has been confirmed in different models of cerebral ischemia. A similar phenomenon observed after a mild epileptic insult conferred a transitory tolerance to a subsequent epileptic episode. This process is termed epileptic tolerance. Other stresses, like hyperthermia or spreading depression, also enhanced brain resistance to detrimental effects of ischemic or epileptic injury. Recently, a cross tolerance between ischemia and epilepsy has been reported. Also, some retrospective studies in humans suggest that endogenous ischemic preconditioning exists in the brain. Altogether these insights of brain tolerance point to the future discovery of potentially useful targets for acute neuroprotection as well as preventive therapy.  相似文献   

11.
Our studies observed that, consistent with the literature, ischemic/hypoxic insults increased the expression of voltage-gated potassium channel (Kv) 1.2 potassium channel as well as elevating the endogenous level of vascular endothelial growth factor (VEGF) in neurons of adult rat brain following middle cerebral artery occlusion and in SH-SY5Y cells after hypoxia and glucose deprivation. Concomitantly, we also observed that ischemic injury increased the tyrosine phosphorylation of Kv 1.2 in in vivo and in vitro; the introduction of exogenous VEGF could attenuate cell death in in vitro models. Furthermore, we found that the protective effect of VEGF is mediated through its up-regulative actions on the tyrosine phosphorylation of Kv 1.2, which in turn has a direct influence on cell viability after ischemic insult. In substantiation of this result, we used anti-sense methodology to suppress the expression of endogenous VEGF, which significantly inhibited the tyrosine phosphorylation of Kv 1.2 and increased cell death elicited by ischemic/hypoxic injury. Finally, the enhancement of the tyrosine phosphorylation of the channel by VEGF in neuronal cells was significantly attenuated in the presence of wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), or genestin, an inhibitor of tyrosine kinase, thus suggesting that the phosphorylation of Kv 1.2 induced by VEGF is mechanistically linked to the PI3-K pathway.  相似文献   

12.
Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.  相似文献   

13.
Diabetes leads to exacerbating brain injury after ischemic stroke, but the underlying mechanisms and whether therapeutic intervention with anesthetic post-conditioning can induce neuroprotection in this population are not known. We tested the hypothesis that alteration of brain mitochondrial (mito) KATP channels might cause exacerbating brain injury after ischemic stroke and attenuate anesthetic post-conditioning induced neuroprotection in diabetes. We also examined whether hyperglycemic correction with insulin would restore anesthetic post-conditioning in diabetes. Non-diabetic rats and diabetic rats treated with or without insulin were subjected to focal cerebral ischemia for 2 h followed by 24 h of reperfusion. Post-conditioning was performed by exposure to sevoflurane for 15 min, immediately at the onset of reperfusion. The role of the mitoKATP channel was assessed by administration of a selective blocker 5-hydroxydecanoate (5-HD) before sevoflurane post-conditioning or by diazoxide (DZX), a mitoKATP channel opener, given in place of sevoflurane. Compared with non-diabetic rats, diabetic rats had larger infarct volume and worse neurological outcome at 24 h after ischemia. Sevoflurane or DZX reduced the infarct volume and improved neurological outcome in non-diabetic rats but not in diabetic rats, and the protective effects of sevoflurane in non-diabetic rats were inhibited by pretreatment with 5-HD. Molecular studies revealed that expression of Kir6.2, an important mitoKATP channel component, was decreased in the brain of diabetic rats as compared to non-diabetic rats. In contrast, hyperglycemic correction with insulin in diabetic rats normalized expression of brain Kir6.2, reduced ischemic brain damage and restored neuroprotective effects of sevoflurane post-conditioning. Our findings suggest that decreased brain mitoKATP channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by anesthetic post-conditioning in diabetes. Insulin glycemic control in diabetes may restore the neuroprotective effects of anesthetic post-conditioning by modulation of brain mitoKATP channel.  相似文献   

14.
Barua  Sumit  Kim  Jong Youl  Kim  Jae Young  Kim  Jae Hwan  Lee  Jong Eun 《Neurochemical research》2019,44(4):735-750

The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-d-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of l-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.

  相似文献   

15.
Acid-sensing ion channel (ASIC) 1a and ASIC2a are acid-sensing ion channels in central and peripheral neurons. ASIC1a has been implicated in long-term potentiation of synaptic transmission and ischemic brain injury, whereas ASIC2a is involved in mechanosensation. Although the biological role and distribution of ASIC1a and ASIC2a subunits in brain have been well characterized, little is known about the intracellular regulation of these ion channels that modulates their function. Using pulldown assays and mass spectrometry, we have identified A kinase-anchoring protein (AKAP)150 and the protein phosphatase calcineurin as binding proteins to ASIC2a. Extended pulldown and co-immunoprecipitation assays showed that these regulatory proteins also interact with ASIC1a. Transfection of rat cortical neurons with constructs encoding green fluorescent protein- or hemagglutinin-tagged channels showed expression of ASIC1a and ASIC2a in punctate and clustering patterns in dendrites that co-localized with AKAP150. Inhibition of protein kinase A binding to AKAPs by Ht-31 peptide reduces ASIC currents in cortical neurons and Chinese hamster ovary cells, suggesting a role of AKAP150 in association with protein kinase A in ASIC function. We also demonstrated a regulatory function of calcineurin in ASIC1a and ASIC2a activity. Cyclosporin A, an inhibitor of calcineurin, increased ASIC currents in Chinese hamster ovary cells and in cortical neurons, suggesting that activity of ASICs is inhibited by calcineurin-dependent dephosphorylation. These data imply that ASIC down-regulation by calcineurin could play an important role under pathological conditions accompanying intracellular Ca(2+) overload and tissue acidosis to circumvent harmful activities mediated by these channels.  相似文献   

16.
The aims of the current study were to 1) examine the effects of hypoxia and acidosis on cultured cortical neurons and 2) explore the role of transporters and ion channels in hypoxic injury. Cell injury was measured in cultured neurons or hippocampal slices following hypoxia (1% O(2)) or acidosis (medium pH 6.8) treatment. Inhibitors of transporters and ion channels were employed to investigate their roles in hypoxic injury. Our results showed that 1) neuronal damage was apparent at 5-7 days of hypoxia exposure, i.e., 36-41% of total lactate dehydrogenase was released to medium and 2) acidosis alone did not lead to significant injury compared with nonacidic, normoxic controls. Pharmacological studies revealed 1) no significant difference in neuronal injury between controls (no inhibitor) and inhibition of Na(+)-K(+)-ATP pump, voltage-gated Na(+) channel, ATP-sensitive K(+) channel, or reverse mode of Na(+)/Ca(2+) exchanger under hypoxia; however, 2) inhibition of NBCs with 500 microM DIDS did not cause hypoxic death in either cultured cortical neurons or hippocampal slices; 3) in contrast, inhibition of Na(+)/H(+) exchanger isoform 1 (NHE1) with either 10 microM HOE-642 or 2 microM T-162559 resulted in dramatic hypoxic injury (+95% for HOE-642 and +100% for T-162559 relative to normoxic control, P < 0.001) on treatment day 3, when no death occurred for hypoxic controls (no inhibitor). No further damage was observed by NHE1 inhibition on treatment day 5. We conclude that inhibition of NHE1 accelerates hypoxia-induced neuronal damage. In contrast, DIDS rescues neuronal death under hypoxia. Hence, DIDS-sensitive mechanism may be a potential therapeutic target.  相似文献   

17.
Despite intensive research, brain tumors remain among the most difficult type of malignancies to treat, due largely to their diffusely invasive nature and the associated difficulty of adequate surgical resection. To migrate through the brain parenchyma and to proliferate, glioma cells must be capable of significant changes in shape and volume. We have previously reported that glioma cells express an amiloride- and psalmotoxin-sensitive cation conductance that is not found in normal human astrocytes. In the present study, we investigated the potential role of this ion channel to mediate regulatory volume increase in glioma cells. We found that the ability of the cells to volume regulate subsequent to cell shrinkage by hyperosmolar solutions was abolished by both amiloride and psalmotoxin 1. This toxin is thought to be a specific peptide inhibitor of acid-sensing ion channel (ASIC1), a member of the Deg/ENaC superfamily of cation channels. We have previously shown this toxin to be an effective blocker of the glioma cation conductance. Our data suggest that one potential role for this conductance may be to restore cell volume during the cell's progression thorough the cell cycle and while the tumor cell migrates within the interstices of the brain.  相似文献   

18.
Large-conductance calcium-activated potassium (K(Ca)) channels regulate the physiological functions of many tissues, including cerebrovascular smooth muscle. l-Glutamic acid (glutamate) is the principal excitatory neurotransmitter in the central nervous system, and oxygen tension is a dominant local regulator of vascular tone. In vivo, glutamate and hypoxia dilate newborn pig cerebral arterioles, and both dilations are blocked by inhibition of carbon monoxide (CO) production. CO dilates cerebral arterioles by activating K(Ca) channels. Therefore, the present study was designed to investigate the effects of glutamate and hypoxia on cerebral CO production and the role of K(Ca) channels in the cerebral arteriolar dilations to glutamate and hypoxia. In the presence of iberiotoxin or paxilline that block dilation to the K(Ca) channel opener, NS-1619, neither CO nor glutamate dilated pial arterioles. Conversely, neither paxilline nor iberiotoxin inhibited dilation to acute severe or moderate prolonged hypoxia. Both glutamate and hypoxia increased cerebrospinal fluid (CSF) CO concentration. Iberiotoxin that blocked dilation to glutamate did not attenuate the increase in CSF CO. The guanylyl cyclase inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), which blocked dilation to sodium nitroprusside, did not inhibit dilation to hypoxia. These data suggest that dilation of newborn pig pial arterioles to glutamate is mediated by activation of K(Ca) channels, consistent with the intermediary signal being CO. Surprisingly, although 1) heme oxygenase (HO) inhibition attenuates dilation to hypoxia, 2) hypoxia increases CSF CO concentration, and 3) K(Ca) channel antagonists block dilation to CO, neither K(Ca) channel blockers nor ODQ altered dilation to hypoxia, suggesting the contribution of the HO/CO system to hypoxia-induced dilation is not by stimulating vascular smooth muscle K(Ca) channels or guanylyl cyclase.  相似文献   

19.
Effects of duration of convulsions on energy reserves of the brain   总被引:1,自引:0,他引:1  
Abstract— Rapid administration (0·4 ml in 1 sec) of the convulsant inhalant, flurothyl (hexafluorodiethyl ether, indoklon), to mice induced within 10 sec clonic-tonic seizures that were accompanied by marked decrease of P-creatine, decrease of ATP and glucose, and increase of lactate in the cerebral cortex. In contrast, mice to which flurothyl had been administered slowly (0·05 ml every 30 sec for 10 min) exhibited myoclonic jerks after about 3 min, merging into irregular clonus at about 5 min, and intermittent clonus thereafter until onset of tonic hind limb extension at about 10 min. In these mice, P-creatine in cerebral cortex decreased gradually for 6 min and then remained through 10 min at levels nearly as low as those reached 10 sec after rapidly administered flurothyl. Lactate in cerebral cortex increased much more during the 10 min of slow administration of flurothyl than in 10 sec of rapid administration, the greatest increase occurring at 4–6 min, as myoclonic jerks merged into irregular clonus. Glucose and ATP in cerebral cortex fluctuated somewhat but did not decrease greatly when flurothyl was administered slowly.  相似文献   

20.
The mechanism of sensing hypoxia and hypoxia-induced activation of cerebral arterial Ca(2+)-activated K(+) (K(Ca)) channel currents and vasodilation is not known. We investigated the roles of the cytochrome P-450 4A (CYP 4A) omega-hydroxylase metabolite of arachidonic acid, 20-hydroxyeicosatetraenoic acid (20-HETE), and generation of superoxide in the hypoxia-evoked activation of the K(Ca) channel current in rat cerebral arterial muscle cells (CAMCs) and cerebral vasodilation. Patch-clamp analysis of K(+) channel current identified a voltage- and Ca(2+)-dependent 238 +/- 21-pS unitary K(+) currents that are inhibitable by tetraethylammonium (TEA, 1 mM) or iberiotoxin (100 nM). Hypoxia (<2% O(2)) reversibly enhanced the open-state probability (NP(o)) of the 238-pS unitary K(Ca) current in cell-attached patches. This effect of hypoxia was not observed on unitary K(Ca) currents recorded from either excised inside-out or outside-out membrane patches. Inhibition of CYP 4A omega-hydroxylase activity increased the NP(o) of K(Ca) single-channel current. Hypoxia reduced the basal endogenous level of 20-HETE by 47 +/- 3% as well as catalytic formation of 20-HETE in cerebral arterial muscle homogenates as determined by liquid chromatography-mass spectrometry analysis. The concentration of authentic 20-HETE was reduced when incubated with the superoxide donor KO(2). Exogenous 20-HETE (100 nM) attenuated the hypoxia-induced activation of the K(Ca) current in CAMCs. Hypoxia did not augment the increase in NP(o) of K(Ca) channel current induced by suicide inhibition of endogenous CYP 4A omega-hydroxylase activity with 17-octadecynoic acid. In pressure (80 mmHg)-constricted cerebral arterial segments, hypoxia induced dilation that was partly attenuated by 20-HETE or by the K(Ca) channel blocker TEA. Exposure to hypoxia caused the generation of intracellular superoxide as evidenced by intense staining of arterial muscle with the fluorescent probe hydroethidine, by quantitation using fluorescent HPLC analysis, and by attenuation of the hypoxia-induced activation of the K(Ca) channel current by superoxide dismutation. These results suggest that the exposure of CAMCs to hypoxia results in the generation of superoxide and reduction in endogenous level of 20-HETE that may account for the hypoxia-induced activation of arterial K(Ca) channel currents and cerebral vasodilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号