首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
4.
5.
Gasch AP  Eisen MB 《Genome biology》2002,3(11):research0059.1-research005922
  相似文献   

6.
The number of online databases and web-tools for gene expression analysis in Arabidopsis thaliana has increased tremendously during the last years. These resources permit the database-assisted identification of putative cis-regulatory DNA sequences, their binding proteins, and the determination of common cis-regulatory motifs in coregulated genes. DNA binding proteins may be predicted by the type of cis-regulatory motif. Further questions of combinatorial control based on the interaction of DNA binding proteins and the colocalization of cis-regulatory motifs can be addressed. The database-assisted spatial and temporal expression analysis of DNA binding proteins and their target genes may help to further refine experimental approaches. Signal transduction pathways upstream of regulated genes are not yet fully accessible in databases mainly because they need to be manually annotated. This review focuses on the use of the AthaMap and PathoPlant® databases for gene expression regulation analysis and discusses similar and complementary online databases and web-tools. Online databases are helpful for the development of working hypothesis and for designing subsequent experiments.  相似文献   

7.
A recent paper demonstrates that coregulated genes on different chromosomes show surprisingly high frequencies of colocalization within the nucleus; this complements similar results found previously for genes localized tens of megabases apart on a single chromosome. Colocalization could be related to the earlier observation of active genes associating with foci where RNA polymerase II is concentrated.  相似文献   

8.
9.
10.
11.
12.
13.
In genetic crosses, HC-toxin production in the filamentous fungus Cochliobolus carbonum appears to be controlled by a single locus, TOX2. At the molecular level, TOX2 is composed of at least seven duplicated and coregulated genes involved in HC-toxin biosynthesis, export, and regulation. All copies of four of the TOX2 genes were previously mapped within a 540-kb stretch of DNA in strain SB111. Subsequently, an additional three TOX2 genes, TOXE, TOXF, and TOXG, have been discovered. In this paper we have mapped all copies of the new genes, a total of seven, and show that except for one of the two copies of TOXE, which was previously shown to be on a chromosome of 0.7 Mb in strain SB111, they are all linked to the previously known TOX2 genes within approximately 600 kb of each other on a chromosome of 3.5 Mb. We show here that this chromosome also contains at least one non-TOX2 gene, EXG2, which encodes an exo-beta1,3-glucanase. EXG2 is still present in strains that have undergone spontaneous deletion of up to approximately 1.4 Mb of the 3.5-Mb chromosome. The results contribute to our understanding of the complex organization of the genes involved in HC-toxin biosynthesis and are consistent with the hypothesis that a reciprocal chromosomal translocation accounts for the pattern of distribution of the TOX2 genes in different C. carbonum isolates.  相似文献   

14.
15.
Ren L  Wang Y  Shi M  Wang X  Yang Z  Zhao Z 《PloS one》2012,7(2):e31416
Chromatin loops play important roles in the dynamic spatial organization of genes in the nucleus. Growing evidence has revealed that the multivalent functional zinc finger protein CCCTC-binding factor (CTCF) is a master regulator of genome spatial organization, and mediates the ubiquitous chromatin loops within the genome. Using circular chromosome conformation capture (4C) methodology, we discovered that CTCF may be a master organizer in mediating the spatial organization of the kcnq5 gene locus. We characterized the cell-type specific spatial organization of the kcnq5 gene locus mediated by CTCF in detail using chromosome conformation capture (3C) and 3C-derived techniques. Cohesion also participated in mediating the organization of this locus. RNAi-mediated knockdown of CTCF sharply diminished the interaction frequencies between the chromatin loops of the kcnq5 gene locus and down-regulated local gene expression. Functional analysis showed that the interacting chromatin loops of the kcnq5 gene locus can repress the gene expression in a luciferase reporter assay. These interacting chromatin fragments were a series of repressing elements whose contacts were mediated by CTCF. Therefore, these findings suggested that the dynamical spatial organization of the kcnq5 locus regulates local gene expression.  相似文献   

16.
Multicolor 3D fluorescence in situ hybridization was used to study arrangement of rRNA genes in Calliphora erythrocephala nurse cell nuclei with different levels of polyteny. It has been shown that the rRNA genes are exclusively localized to chromosome 6, suggesting that chromosome 6 is the only C. erythrocephala chromosome responsible for nucleolar formation. We have also described changes in localization of ribosomal genes within the chromosome territory during polytenization, namely, that rDNA signals are detected in the peripheral region of chromosome territory starting from the stage of polytene chromosomes. In addition, it has emerged that large nucleolus associated with chromosome 6 starts to develop in the central nuclear region in the C. erythrocephala nurse cell nuclei at the stage of a primary reticular structure. The central position and nucleolar structure are retained at the stages when chromosome 6 occupies the central position, that is, at the stages of polytene and bloblike chromosomes. When the nucleus restores a reticular structure but at a higher polyteny level, the displacement of chromosome 6 to the nuclear periphery is accompanied by disruption of the large nucleolus into micronucleoli. The micronucleoli are distributed in the nuclear space retaining their association with the nucleolar-organizing regions of chromosome 6. Thus, our data suggest that the large-scale alterations in the organization of chromosome 6 and the nucleolus during polytenization are the correlated processes directly dependent on the rRNA gene activity. The earlier described dynamics of nucleolar-organizing chromosome territory and nucleolus in the nuclear space is likely to be associated with the change in the total expression activity of the nucleus, which complies with the hypothesis on the correlation between spatial nuclear organization and expression regulation of genetic material.  相似文献   

17.
18.
A genome must locate its coding genes on the chromosomes in a meaningful manner with the help of natural selection, but the mechanism of gene order evolution is poorly understood. To explore the role of selection in shaping the current order of coding genes and their cis-regulatory elements, a comparative genomic approach was applied to the baker's yeast Saccharomyces cerevisiae and its close relatives. S. cerevisiae have experienced a whole-genome duplication followed by an extensive reorganization process of gene order, during which a number of new adjacent gene pairs appeared. We found that the proportion of new adjacent gene pairs in divergent orientation is significantly reduced, suggesting that such new divergent gene pairs may be disfavored most likely because their coregulation may be deleterious. It is also found that such new divergent gene pairs have particularly long intergenic regions. These observations suggest that selection specifically worked against deletions in intergenic regions of new divergent gene pairs, perhaps because they should be physically kept away so that they are not coregulated. It is indicated that gene regulation would be one of the major factors to determine the order of coding genes.  相似文献   

19.
20.
In eukaryotes, neighboring genes can be packaged together in specific chromatin structures that ensure their coordinated expression. Examples of such multi-gene chromatin domains are well-documented, but a global view of the chromatin organization of eukaryotic genomes is lacking. To systematically identify multi-gene chromatin domains, we constructed a compendium of genome-scale binding maps for a broad panel of chromatin-associated proteins in Drosophila melanogaster. Next, we computationally analyzed this compendium for evidence of multi-gene chromatin domains using a novel statistical segmentation algorithm. We find that at least 50% of all fly genes are organized into chromatin domains, which often consist of dozens of genes. The domains are characterized by various known and novel combinations of chromatin proteins. The genes in many of the domains are coregulated during development and tend to have similar biological functions. Furthermore, during evolution fewer chromosomal rearrangements occur inside chromatin domains than outside domains. Our results indicate that a substantial portion of the Drosophila genome is packaged into functionally coherent, multi-gene chromatin domains. This has broad mechanistic implications for gene regulation and genome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号