首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present paper is to characterize bioinspired chitosan (CS) + hydroxyapatite (HA) coatings with various components ratio on a zirconium alloy with titanium.The coatings were characterized by FT-IR,SEM,hydrophilic/hydrophobic balance,adherence,roughness,electrochemical stability and in vitro cell response.Electrochemical tests,including potentiodynamic polarization curves and electrochemical impedance spectroscopy,were performed in normal saline physiological solution.Cell viability of MC3T3-E1 osteoblasts,lactate dehydrogenase,nitric oxide,and Reactive Oxygen Species (ROS) levels,as well as actin cytoskeleton morphology,were evaluated as biological in vitro tests.The results on in vitro cell response indicated good cell membrane integrity and viability for all samples,but an increased cell number,a decreased ROS level and a better cytoskeleton organization were noticed for the sample with a higher CS content.The coating with highest CS concentration indicated the best performance based on the experimental data.The highest hydrophilic character,highest resistance to corrosion and best biocompatibility as well recommend this coating for bioapplications in tissue engineering.  相似文献   

2.
Electrochemical impedance spectroscopy (EIS) as a powerful, non-invasive and informative technique was used to obtain important information about kinetics of doping process in conducting polymers. Polypyrrole (PPy) and its derivatives can form conducting polymer films which represent excellent charge transfer behaviors during doping processes. It can also have a wide range of applications in bioelectrochemistry. In the present study the conducting polymer of alpha-carboxy pyrrole (alpha-COOH-PPy), appended onto the underlying film of PPy, was prepared by electrochemical methods and its behavior was analyzed using EIS. From highly accurate fitting of impedance results it was found that the charging mechanism is governed by the diffusion process. In addition, the impedance analyses provided values for the bulk polymer parameters including diffusion coefficient (D), equilibrium capacitance (C(0)) and diffusion resistance (R(0)). The surface morphology of the polymeric film was characterized using scanning electron microscopy (SEM). The film was then used to immobilize the cytochrome C (cyt-C) and to perform its electrochemical studies. The modified cyt-C/alpha-COOH-PPy electrode was used for electrocatalytic reduction of H(2)O(2) in solution and its viability as a new impedimetric biosensor was examined. Based on the calibration curve obtained for the proposed impedimetric biosensor, the limit of detection and relative standard deviation were evaluated as 0.25mumolL(-1) and 7%, respectively. Finally, the prolonged stability test was performed and high stability and reproducibility of the new biosensor was confirmed.  相似文献   

3.
Recent studies of interactions between the brain and immune system cells, as well as reports of bioeffects from artificial electromagnetic sources too weak to exert thermal effects, suggest that biophysical communication may exist between them not explained by electrochemical action. We report here that a human donor's endogenous electric fields protect his lymphocyte viability in vitro. The endogenous fields of a healthy male donor were introduced into a cell culture via a gold wire for 7 h overnight and the cells' viability compared by trypan blue exclusion, with nonexposed cells cultured similarly. Cells exposed to their donor's endogenous fields remained significantly more viable compared with unexposed cells. However, when cells were exposed to the endogenous fields of a nondonor, viability was no different from that of unexposed controls. We conclude that endogenous electric fields, observed in all living organisms, perform a previously unsuspected but important role in cellular immune system surveillance.  相似文献   

4.
Electrochemical impedance spectroscopy (EIS) was used to monitor the growth of mammalian cancer cells and evaluate the cytotoxicity of chemicals using Fe(CN)6(3-/4-) as a redox probe. Cancer cells, the human hepatocarcinoma cell line (BEL7404), were grown on optically transparent indium tin oxide (ITO) semiconductor slides, which were used as the working electrodes in electrochemical experiments. Attachment and proliferation of cancer cells on ITO surfaces resulted in increase of electron-transfer resistance (R(et)) between the redox probe of Fe(CN)6(3-/4-) in electrolyte solution and ITO electrode surface. For cytotoxicity assessment, cells grown on ITO substrates were further cultured in the presence of different cytotoxicants and electrochemical impedance measurements were carried out at different time intervals. Gemcitabine, a promising antineoplastic drug showing activity against a wide spectrum of human solid tumors, was selected as a model for long-term cytotoxicity effect study, whereas mercury chloride represented a model for acute toxicants. The inhibitions of gemcitabine and mercury chloride on the viability and proliferation of BEL7404 cells were observed from the electrochemical impedance experiments, and the different action modes were discriminated. Additionally, microscope images were also used to observe the effects of these two chemicals on the morphology of the cells. General consistency has been found between the electrochemical impedance response and the morphological observation. Such an impedance method provides a simple and inexpensive way for in vitro assessment of chemical cytotoxicity.  相似文献   

5.
Reducing the impedance of a triboelectric nanogenerator (TENG) without power loss is crucial for enhancing its energy conversion efficiency and overall performance. In this paper, a novel signal management structure, based on a newly designed sliding-mode TENG, aimed at effectively reducing impedance by converting narrow, instantaneous signals into broader ones is presented. This transformation is accomplished by adding a grounded electrode connected to a high-inductive inductor and fine-tuning the parasitic capacitance of the dielectric material. Utilizing a highly resistive material like P(VDF–TrFE), a significant improvement in the TENG's performance is achieved, resulting in an increase of output power to 0.352 mW and a decrease in impedance from 3.2 to 0.3 MΩ. This results in a threefold increase in charging speed, which can be attributed to the reduced charge loss and improved matching at lower impedance. Based on these promising findings, the enhanced TENG is successfully connected to power a system for electrochemical CO2 reduction for CO production. This system effectively reduces the required electrochemical reduction potential by ≈15% under real environments.  相似文献   

6.
Electrochemical impedance spectroscopy was tested to monitor the cell attachment and the biofilm proliferation in order to identify characteristic events induced on the metal surface by Gram-negative (Pseudomonas aeruginosa PAO1) and Gram-positive (Bacillus subtilis) bacteria strains. Electrochemical impedance spectra of AISI 304 electrodes during cell attachment and initial biofilm growth for both strains were obtained. It can be observed that the resistance increases gradually with the culture time and decreases with the biofilm detachment. So, the applicability of electric cell-substrate impedance sensing (ECIS) for studying the attachment and spreading of cells on a metal surface has been demonstrated. The biofilm formation was also characterized by the use of scanning electron microscopy and confocal laser scanning microscopy and COMSTAT image analysis. The electrochemical results roughly agree with the microscope image observations. The ECIS technique used in this study was used for continuous real-time monitoring of the initial bacterial adhesion and the biofilm growth. It provides a simple and non-expensive electrochemical method for in vitro assessment of the presence of biofilms on metal surfaces.  相似文献   

7.
A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate.  相似文献   

8.
A polypeptide chain formed by recombinant antigens, cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) (CF-Chimera) of Trypanosoma cruzi, was adsorbed on gold and platinum electrodes and investigated by electrochemical impedance spectroscopy on phosphate buffer saline solutions (PBS) containing a redox couple. It was found that the adsorption is strongly sensitive to the oxide layer on the electrode surface. In the majority of the experiments the antigens retained their activity as observed through their interaction with sera from chronic chagasic patients. The results expressed in terms of the charge transfer resistance across the interface, indicate the viability of using the impedance methodology for the development of a biosensor for serological diagnosis of Chagas' disease.  相似文献   

9.
Beta 1 integrin is a membrane protein responsible for attachment and migration of osteosarcoma cells. In this study, expression of β1 integrin on MG-63 cells, a human osteogenic sarcoma cell line, was monitored using electrochemical impedance spectroscopy (EIS). ITO-based biochips were developed using a semiconductor technique. Differences in electric resistance (ΔR) were measured continuously when cells binding with anti-β1 integrin antibody coagulated with nano-scale gold particles. The results of the EIS system were compared with traditional immunofluorescence staining. We found that sample chambers with higher cell densities had larger ΔR values. When the cell densities increased from 5 × 10(4) cells/ml to 5 × 10(5) cells/ml, the ΔR value dose-dependently increased from 14 Ω to 37 Ω. In addition, a highly linear relationship (correlation coefficient, 0.921) was found between the ΔR values and the corresponding fluorescence intensities (p<0.05). These results suggest that electrochemical impedance spectroscopy can be a useful tool for evaluating β1 integrin expression on cell membranes.  相似文献   

10.
In general, the electrochemical characteristics of solid/liquid or liquid/liquid interfaces are highly nonlinear, i.e., the capacitance changes markedly according to the applied voltage. In this paper, we propose a novel method for evaluating these nonlinear characteristics quantitatively. That is, a sinusoidal voltage source is applied to a test solution and the waveform of the output current is analyzed by Fourier transformation. It is shown theoretically that higher harmonic components in the Fourier transformation afford us useful information on nonlinear behavior. It is stressed that our technique is entirely different from the classical impedance method, i.e., nonlinear components of the impedance can be evaluated in our method, having been ignored previously in the classical impedance measurement. As an application of this method, we have studied the effect of taste compounds on the intensities of the higher harmonics, using an electrochemical cell containing an aqueous solution of sodium oleate. It has been found that the intensities of the higher harmonics exhibit characteristic changes upon the addition of taste compounds, the change being dependent upon the taste category. The characteristic response to taste compounds in the electrochemical nonlinearity is discussed in relation to the experimental trend of the dynamic isotherm for oleic acid at an air/water interface.  相似文献   

11.
Serum starvation is a widely used condition in molecular biology experiments. Opti-MEM is a serum-reduced media used during transfection of genetic molecules into mammalian cells. However, the impact of such media on cell viability and protein synthesis is unknown. A549 human lung epithelial cell viability and morphology were adversely affected by growing in Opti-MEM. The cellular protein levels of chloride intracellular channel protein 1, proteasome subunit alpha Type 2, and heat shock 70 kDa protein 5 were dysregulated in A549 cells after growing in serum-reduced media. Small interfering RNA transfection was done in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum, and knockdown efficacy was determined compared with Opti-MEM. Similar amounts of knockdown of the target proteins were achieved in DMEM, and cell viability was higher compared with Opti-MEM after transfection. Careful consideration of the impact of Opti-MEM media during the culture or transfection is important for experimental design and results interpretation.  相似文献   

12.
Quercetin (Qu), a flavonoid compound, exists widely in the human diet and exhibits a variety of pharmacological activities. This work is aimed at studying the effect of Qu on the bioactive protein, human serum albumin (HSA) under simulated biophysical conditions. Multiple spectroscopic methods (including fluorescence and circular dichroism), electrochemical impedance spectra (EIS) and molecular modeling were employed to investigate the interaction between Qu and HSA. The fluorescence quenching and EIS experimental results showed that the fluorescence quenching of HSA was caused by formation of a Qu–HSA complex in the ground state, which belonged to the static quenching mechanism. Based on the calculated thermodynamic parameters, it concluded that the interaction was a spontaneous process and hydrogen bonds combined with van der Waal's forces played a major role in stabilizing the Qu–HSA complex. Molecular modeling results demonstrated that several amino acids participated in the binding process and the formed Qu–HSA complex was stabilized by H‐bonding network at site I in sub‐domain IIA, which was further confirmed by the site marker competitive experiments. The evidence from circular dichroism (CD) indicated that the secondary structure and microenvironment of HSA were changed. Alterations in the conformation of HSA were observed with a reduction in the amount of α helix from 59.9% (free HSA) to 56% (Qu–HSA complex), indicating a slight unfolding of the protein polypeptides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A model azo dye, methyl orange (MO), was reduced through in situ utilization of the electrons derived from the anaerobic conversion of organics in a microbial fuel cell (MFC). The MO reduction process could be described by a pseudo first-order kinetic model with a rate constant of 1.29 day−1. Electrochemical impedance spectroscopic analysis shows that the cathode had a high polarization resistance, which could decrease the reaction rate and limit the electron transfer. To improve the MO reduction efficiency, the cathode was modified with redox mediators to enhance the electron transfer. After modification with thionine, the polarization resistance significantly decreased by over 50%. As a consequence, the MO decolorization rate increased by over 20%, and the power density was enhanced by over three times. Compared with thionine, anthraquinone-2, 6-disulfonate modified cathode has less positive effect on the MFC performance. These results indicate that the electrode modification with thionine is a useful approach to accelerate the electrochemical reactions. This work provides useful information about the key factors limiting the azo dye reduction in the MFC and how to improve such a process.  相似文献   

14.
In the present work we studied the effect of UV-C irradiation on short-term protoplast physiology, with the aim of identifying and assessing parameters which can provide valuable information for asymmetric fusion experiments. Protoplast viability, cell wall regeneration, density of cell suspension and intensity of DAPI signal were followed by using microscopy and by the detection of specific fluorescent or spectroscopic signals in a microplate reader. The control and irradiated mesophyll protoplasts of Cucumis sativus were used for this experiment. In contrast to control cells, viability of irradiated cells significantly decreased. Intensive cell wall regeneration was observed only in control cells, which also showed significantly higher DAPI fluorescence signal. Microscopy for determination of viability by FDA and cell wall regeneration by Calcofluor White were modified for microplate reader instrumentation. These methods are simple, fast and suitable for detection of the effectiveness of UV-C irradiation of cells intended to be used in asymmetric fusion experiments.  相似文献   

15.
Five new iridoid glucosides, cannabifolisides A–E (15), together with nine analogues (614), were isolated from the leaves of Vitex negundo var. cannabifolia. Their structures were elucidated by spectroscopic data (NMR, UV, IR, and MS) analyses and comparison of their spectroscopic and physical data with the literature values. The protective effect of isolated compounds on human gastric epithelial cells were evaluated by measuring the enhanced cell viability of GES-1 cell insulted by TCA. Among these, compounds 4, 6, 8, 10, 12, and 14 remarkably increased the cell viability in a concentration-depend manner.  相似文献   

16.
Metastasis mechanisms depend on cell metabolism changes, migration and adhesion to different tissues. To understand their choice of interaction site, the tumoral cell adhesion to model surfaces was studied. The response of Caco-2 tumoral cells cultured on polyelectrolyte film-functionalized surfaces with or without adhesion proteins (fibronectin or collagen IV) was analyzed. Using the layer-by- layer method, multilayer films were prepared with cationic poly(allylamine hydrochloride) and anionic poly(sodium 4-styrenesulfonate) polyelectrolytes. Film surface wettability was evaluated. The electrochemical impedance spectroscopy analyses were carried out to control the elaborated surfaces on which Caco-2 tumoral cells were cultured. The cell velocity was studied by video-microscopy and a cell colorimetric assay (WST-1) was used to quantify cell viability. The film surface parameters as well as the protein nature and localization in the film were found to modulate cell response. Results demonstrated that the cancer cell motility and proliferation were higher when cultured onto pure collagen located above the polyelectrolyte film and that the reverse surprisingly was observed when proteins were inserted into the polyelectrolyte film. Data also showed that cell motility was correlated with a high charge transfer resistance (Rct) and a low surface free energy (SFE) polar component (electron donor character). This relationship was valid only for pure external proteins. Thus, fibronectin exhibited a low Rct and a high SFE polar component, which decreased cell motility and proliferation.  相似文献   

17.
Impedimetric analysis on adherently growing cells by micro-electrodes provides information related to cell number, cell adhesion and cellular morphology. In this study, cell-based biosensor with micro-electrode arrays (MEAs) was used to monitor the culture behavior of mammalian cancer cells and evaluate the chemosensitivity of anti-cancer drugs using electrochemical impedance spectroscopy. The platinum electrode arrays were fabricated by semiconductor technology to a 10 x 10 pattern, with diameter of 80 microm of each electrode. The human oesophageal cancer cell lines (KYSE 30) were cultured on the surface of the electrodes with the pre-coated fibronectin, the connecting protein for tumor cells metastasis and adhesion in extracellular matrix. Morphology changes during cells adhesion, spreading, and proliferation can be detected by impedimetric analysis in a real time and non-invasive way. Cisplatin was added to cells for potential drug screening applications. The experimental results show that this well-known anti-cancer drug has characteristic chemosensitivity effects on KYSE 30 cells which can be detected by MEA. Thus, this cell-based chip provides a useful analytical method for cancer research.  相似文献   

18.
The anode/electrolyte interface behavior, and by extension, the overall cell performance of sodium-ion batteries is determined by a complex interaction of processes that occur at all components of the electrochemical cell across a wide range of size- and timescales. Single-scale studies may provide incomplete insights, as they cannot capture the full picture of this complex and intertwined behavior. Broad, multiscale studies are essential to elucidate these processes. Within this perspectives article, several analytical and theoretical techniques are introduced, and described how they can be combined to provide a more complete and comprehensive understanding of sodium-ion battery (SIB) performance throughout its lifetime, with a special focus on the interfaces of hard carbon anodes. These methods target various length- and time scales, ranging from micro to nano, from cell level to atomistic structures, and account for a broad spectrum of physical and (electro)chemical characteristics. Specifically, how mass spectrometric, microscopic, spectroscopic, electrochemical, thermodynamic, and physical methods can be employed to obtain the various types of information required to understand battery behavior will be explored. Ways are then discussed how these methods can be coupled together in order to elucidate the multiscale phenomena at the anode interface and develop a holistic understanding of their relationship to overall sodium-ion battery function.  相似文献   

19.
Development of highly efficient anode is critical for enhancing the power output of microbial fuel cells (MFCs). The aim of this work is to investigate whether modification of carbon paper (CP) anode with graphene (GR) via layer-by-layer assembly technique is an effective approach to promote the electricity generation and methyl orange removal in MFCs. Using cyclic voltammetry and electrochemical impedance spectroscopy, the GR/CP electrode exhibited better electrochemical behavior. Scanning electron microscopy results revealed that the surface roughness of GR/CP increased, which was favorable for more bacteria to attach to the anode surface. The MFCs equipped with GR/CP anode achieved a stable maximum power density of 368 mW m?2 under 1,000 Ω external resistance and a start time for the initial maximum voltage of 180 h, which were, respectively, 51 % higher and 31 % shorter than the corresponding values of the MFCs with blank anode. The anode and cathode polarization curves revealed negligible difference in cathode potentials but obviously difference in anode potentials, indicating that the GR-modified anode other than the cathode was responsible for the performance improvement of MFC. Meanwhile, compared with MFCs with blank anode, 11 % higher decolorization efficiency and 16 % higher the chemical oxygen demand removal rate were achieved in MFC with GR-modified anode during electricity generation. This study might provide an effective way to modify the anode for enhanced electricity generation and efficient removal of azo dye in MFCs.  相似文献   

20.

The development of an electrochemical detector to monitor the in situ formation of biofilms is described. The detector consisted of an electrochemical cell containing three electrodes, whose response to the application of a potential profile to the working electrode was sensitive to the amount of biofilm present on the surface. The electrochemical technique used was repetitive cyclic voltammetry. Differences between the response of the uncolonised electrode and after Pseudomonas fluorescens biofilms of different ages were grown on its surface were determined. The results show that cyclic voltammetry applied to platinum electrodes can be used to detect young biofilms. The development of the shape of the voltammogram as the potential is cycled may constitute a means of providing information on the coverage of the surface. Observation of the platinum electrodes before and after the electrochemical measurements showed that even after 30 min of recycling, most of the cells were still adhered to the surface, although some may have lost viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号