共查询到20条相似文献,搜索用时 15 毫秒
1.
Tikhonov A. S. Mintaev R. R. Glazkova D. V. Bogoslovskaya E. V. Shipulin G. A. 《Molecular Biology》2022,56(4):508-516
Molecular Biology - The mechanisms for the protection of the human body from viral or bacterial agents are extremely diverse. In one such mechanism, an important role belongs to the cytidine... 相似文献
2.
Kei Sato Junko S. Takeuchi Naoko Misawa Taisuke Izumi Tomoko Kobayashi Yuichi Kimura Shingo Iwami Akifumi Takaori-Kondo Wei-Shau Hu Kazuyuki Aihara Mamoru Ito Dong Sung An Vinay K. Pathak Yoshio Koyanagi 《PLoS pathogens》2014,10(10)
Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo. 相似文献
3.
Spyridon Stavrou Daniel Crawford Kristin Blouch Edward P. Browne Rahul M. Kohli Susan R. Ross 《PLoS pathogens》2014,10(5)
The apolipoprotein B editing complex 3 (A3) cytidine deaminases are among the most highly evolutionarily selected retroviral restriction factors, both in terms of gene copy number and sequence diversity. Primate genomes encode seven A3 genes, and while A3F and 3G are widely recognized as important in the restriction of HIV, the role of the other genes, particularly A3A, is not as clear. Indeed, since human cells can express multiple A3 genes, and because of the lack of an experimentally tractable model, it is difficult to dissect the individual contribution of each gene to virus restriction in vivo. To overcome this problem, we generated human A3A and A3G transgenic mice on a mouse A3 knockout background. Using these mice, we demonstrate that both A3A and A3G restrict infection by murine retroviruses but by different mechanisms: A3G was packaged into virions and caused extensive deamination of the retrovirus genomes while A3A was not packaged and instead restricted infection when expressed in target cells. Additionally, we show that a murine leukemia virus engineered to express HIV Vif overcame the A3G-mediated restriction, thereby creating a novel model for studying the interaction between these proteins. We have thus developed an in vivo system for understanding how human A3 proteins use different modes of restriction, as well as a means for testing therapies that disrupt HIV Vif-A3G interactions. 相似文献
4.
Dörrschuck E Fischer N Bravo IG Hanschmann KM Kuiper H Spötter A Möller R Cichutek K Münk C Tönjes RR 《Journal of virology》2011,85(8):3842-3857
Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5' TGC for A3Z2 and A3Z2-Z3 and 5' CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation. 相似文献
5.
6.
Michael A. Carpenter Ming Li Anurag Rathore Lela Lackey Emily K. Law Allison M. Land Brandon Leonard Shivender M. D. Shandilya Markus-Frederik Bohn Celia A. Schiffer William L. Brown Reuben S. Harris 《The Journal of biological chemistry》2012,287(41):34801-34808
Multiple studies have indicated that the TET oxidases and, more controversially, the activation-induced cytidine deaminase/APOBEC deaminases have the capacity to convert genomic DNA 5-methylcytosine (MeC) into altered nucleobases that provoke excision repair and culminate in the replacement of the original MeC with a normal cytosine (C). We show that human APOBEC3A (A3A) efficiently deaminates both MeC to thymine (T) and normal C to uracil (U) in single-stranded DNA substrates. In comparison, the related enzyme APOBEC3G (A3G) has undetectable MeC to T activity and 10-fold less C to U activity. Upon 100-fold induction of endogenous A3A by interferon, the MeC status of bulk chromosomal DNA is unaltered, whereas both MeC and C nucleobases in transfected plasmid DNA substrates are highly susceptible to editing. Knockdown experiments show that endogenous A3A is the source of both of these cellular DNA deaminase activities. This is the first evidence for nonchromosomal DNA MeC to T editing in human cells. These biochemical and cellular data combine to suggest a model in which the expanded substrate versatility of A3A may be an evolutionary adaptation that occurred to fortify its innate immune function in foreign DNA clearance by myeloid lineage cell types. 相似文献
7.
8.
Pathogenic viral infections have exerted selection pressure on their hosts to evolve cellular antiviral inhibitors referred to as restriction factors. Examples of such molecules are APOBEC3G, APOBEC3F and TRIM5alpha. APOBEC3G and APOBEC3F are cytidine deaminases that are able to strongly inhibit retroviral replication by at least two mechanisms. They are counteracted by the lentiviral Vif protein. TRIM5alpha binds to sensitive, incoming retroviruses via its C-terminal PRY/SPRY domain and rapidly recruits them to the proteasome before significant viral DNA synthesis can occur. Both of these proteins robustly block retroviral replication in a species-specific way. It remains an open but important question as to whether innate restriction factors such as these can be harnessed to inhibit HIV-1 replication in humans. 相似文献
9.
10.
Stefan Harjes William C. Solomon Ming Li Kuan-Ming Chen Elena Harjes Reuben S. Harris Hiroshi Matsuo 《Journal of virology》2013,87(12):7008-7014
APOBEC3G has an important role in human defense against retroviral pathogens, including HIV-1. Its single-stranded DNA cytosine deaminase activity, located in its C-terminal domain (A3Gctd), can mutate viral cDNA and restrict infectivity. We used time-resolved nuclear magnetic resonance (NMR) spectroscopy to determine kinetic parameters of A3Gctd''s deamination reactions within a 5′-CCC hot spot sequence. A3Gctd exhibited a 45-fold preference for 5′-CCC substrate over 5′-CCU substrate, which explains why A3G displays almost no processivity within a 5′-CCC motif. In addition, A3Gctd''s shortest substrate sequence was found to be a pentanucleotide containing 5′-CCC flanked on both sides by a single nucleotide. A3Gctd as well as full-length A3G showed peak deamination velocities at pH 5.5. We found that H216 is responsible for this pH dependence, suggesting that protonation of H216 could play a key role in substrate binding. Protonation of H216 appeared important for HIV-1 restriction activity as well, since substitutions of H216 resulted in lower restriction in vivo. 相似文献
11.
12.
13.
14.
Hendrik Huthoff Flavia Autore Sarah Gallois-Montbrun Franca Fraternali Michael H. Malim 《PLoS pathogens》2009,5(3)
The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function. 相似文献
15.
16.
17.
18.
Nicolas Y. Petit Sidonie Lambert-Niclot Anne-Geneviève Marcelin Sylvie Garcia Gilles Marodon 《PloS one》2015,10(9)
HIV replication follows a well-defined pattern during the acute phase of the infection in humans. After reaching a peak during the first few weeks after infection, viral replication resolves to a set-point thereafter. There are still uncertainties regarding the contribution of CD8+ T cells in establishing this set-point. An alternative explanation, supported by in silico modeling, would imply that viral replication is limited by the number of available targets for infection, i.e. CD4+CCR5+ T cells. Here, we used NOD.SCID.gc-/- mice bearing human CD4+CCR5+ and CD8+ T cells derived from CD34+ progenitors to investigate the relative contribution of both in viral control after the peak. Using low dose of a CCR5-tropic HIV virus, we observed an increase in viral replication followed by “spontaneous” resolution of the peak, similar to humans. To rule out any possible role for CD8+ T cells in viral control, we infected mice in which CD8+ T cells had been removed by a depleting antibody. Globally, viral replication was not affected by the absence of CD8+ T cells. Strikingly, resolution of the viral peak was equally observed in mice with or without CD8+ T cells, showing that CD8+ T cells were not involved in viral control in the early phase of the infection. In contrast, a marked and specific loss of CCR5-expressing CD4+ T cells was observed in the spleen and in the bone marrow, but not in the blood, of infected animals. Our results strongly suggest that viral replication during the acute phase of the infection in humanized mice is mainly constrained by the number of available targets in lymphoid tissues rather than by CD8+ T cells. 相似文献
19.
Antiviral defense by APOBEC3 family proteins 总被引:1,自引:0,他引:1
APOBEC3G is a potent antiretroviral factor, which belongs to the APOBEC superfamily of cytidine deaminases. It deaminates cytidine to uridine in nascent minus-strand viral DNA, inducing G-to-A hypermutation in the plus-strand viral DNA. HIV-1 Vif protein overcomes the antiviral activity of APOBEC3G by targeting it for ubiquitin-dependent degradation. Recent accumulating evidences that other members of APOBEC proteins also show antiviral activity on a wide variety of viruses suggest that APOBEC family proteins play a crucial role in an antiviral defense as an innate immunity. Here, we review recent progress in research on APOBEC3 proteins. 相似文献