首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cell death-inducing DFFA-like effector c (CIDEC) protein, also known as fat specific protein 27 (Fsp27), is localized to lipid droplets. CIDEC protein is required for unilocular lipid droplet formation and optimal energy storage in addition to controlling lipid metabolism in adipocytes and hepatocytes. Research found that Ad-36 could induce lipid droplets in the cultured skeletal muscle cells and this process may be mediated by promoting CIDEC expression. The content of intermuscular fat is an important index for evaluation of beef quality, so the CIDEC gene appeared to be a candidate gene for regulation of intermuscular fat, however similar research for the bovine CIDEC gene is lacking. This paper examined the tissue expression profile of CIDEC gene in cattle using real-time RT-PCR to suggest that bovine CIDEC is highly expressed in adipose tissue. In addition, the Bovine CIDEC gene was cloned and inserted into the eukaryotic expression vector pET-28a(+), whereupon recombinant bovine CIDEC protein was induced and identified by Western-blot. A phylogenetic analysis showed that the animo acid sequence of bovine CIDEC was closer to mammalian CIDEC than rasorial CIDEC. We found ten single nucleotide polymorphisms sites (SNPs) in bovine CIDEC gene, of which SNP 2, 3, 4, 6 and 9, and SNP 8 and 10 were in complete linkage disequilibrium, respectively. SNP 1, 2 and 10 were used in further haplotype studies. Eight different haplotypes were identified in 973 cattle, of which haplotype 8 predominated with frequencies ranging from 42.90 to 54.30 %. This research provides a basis for future functional studies of CIDEC in cattle.  相似文献   

2.
White adipose tissue (WAT) functions as an energy reservoir where excess circulating fatty acids are transported to WAT, converted to triglycerides, and stored as unilocular lipid droplets. Fat-specific protein 27 (FSP27, CIDEC in humans) is a lipid-coating protein highly expressed in mature white adipocytes that contributes to unilocular lipid droplet formation. However, the influence of FSP27 in adipose tissue on whole-body energy homeostasis remains unclear. Mice with adipocyte-specific disruption of the Fsp27 gene (Fsp27ΔAd) were generated using an aP2-Cre transgene with the Cre/LoxP system. Upon high-fat diet feeding, Fsp27ΔAd mice were resistant to weight gain. In the small WAT of these mice, small adipocytes containing multilocular lipid droplets were dispersed. The expression levels of the genes associated with mitochondrial abundance and brown adipocyte identity were increased, and basal lipolytic activities were significantly augmented in adipocytes isolated from Fsp27ΔAd mice compared with the Fsp27F/F counterparts. The impaired fat-storing function in Fsp27ΔAd adipocytes and the resultant lipid overflow from WAT led to marked hepatosteatosis, dyslipidemia, and systemic insulin resistance in high-fat diet-treated Fsp27ΔAd mice. These results demonstrate a critical role for FSP27 in the storage of excess fat in WAT with minimizing ectopic fat accumulation that causes insulin-resistant diabetes and non-alcoholic fatty liver disease. This mouse model may be useful for understanding the significance of fat-storing properties of white adipocytes and the role of local FSP27 in whole-body metabolism and estimating the pathogenesis of human partial lipodystrophy caused by CIDEC mutations.  相似文献   

3.
Peroxisome proliferator-activated receptor gamma (PPARgamma) is induced in leptin-deficient (ob/ob) mouse liver and is critical for the development of hepatic steatosis. The present study shows that fat-specific protein 27 (Fsp27) in ob/ob liver is a direct target gene of PPARgamma and can elevate hepatic triglyceride levels. FSP27 belongs to the CIDE family, composed of CIDE A, CIDE B, and FSP27/CIDE C, all of which contain a conserved CIDE-N domain. FSP27 was recently reported to be a lipid droplet-binding protein and to promote lipid accumulation in adipocytes. The Fsp27 gene was expressed at high levels in ob/ob liver and at markedly lower levels in ob/ob livers lacking PPARgamma. Forced expression of FSP27 by adenovirus in hepatocytes in vitro or in vivo led to increased triglyceride levels. Knockdown by adenovirus expressing FSP27 shRNA resulted in lower accumulation of hepatic triglycerides compared to control adenovirus-infected liver. Taken together, these results indicate that FSP27 is a direct mediator of PPARgamma-dependent hepatic steatosis.  相似文献   

4.
Peroxisome proliferator-activated receptor gamma (PPARgamma) is induced in leptin-deficient (ob/ob) mouse liver and is critical for the development of hepatic steatosis. The present study shows that fat-specific protein 27 (Fsp27) in ob/ob liver is a direct target gene of PPARgamma and can elevate hepatic triglyceride levels. FSP27 belongs to the CIDE family, composed of CIDE A, CIDE B, and FSP27/CIDE C, all of which contain a conserved CIDE-N domain. FSP27 was recently reported to be a lipid droplet-binding protein and to promote lipid accumulation in adipocytes. The Fsp27 gene was expressed at high levels in ob/ob liver and at markedly lower levels in ob/ob livers lacking PPARgamma. Forced expression of FSP27 by adenovirus in hepatocytes in vitro or in vivo led to increased triglyceride levels. Knockdown by adenovirus expressing FSP27 shRNA resulted in lower accumulation of hepatic triglycerides compared to control adenovirus-infected liver. Taken together, these results indicate that FSP27 is a direct mediator of PPARgamma-dependent hepatic steatosis.  相似文献   

5.
Li F  Gu Y  Dong W  Li H  Zhang L  Li N  Li W  Zhang L  Song Y  Jiang L  Ye J  Li Q 《The FEBS journal》2010,277(20):4173-4183
Cell death-inducing DFF45-like effector (CIDE) family proteins, including cell death-inducing DFF45-like effector A (CIDEA), cell death-inducing DFF45-like effector B (CIDEB) and cell death-inducing DFF45-like effector C (CIDEC) [fat-specific protein of 27 kDa in rodent (FSP27) in rodents], were originally identified by their sequence homology to the N-terminal region of DNA fragmentation factor DFF40/45. Recent reports have revealed that CIDE family proteins play important roles in lipid metabolism. Several studies involving knockdown mice revealed that FSP27 is a lipid droplet-targeting protein that can promote the formation of lipid droplets. However, the detailed roles of human CIDEC in the differentiation of human adipocytes remain unknown. In the present study, we found that the expression of CIDEC increased during the differentiation of fetal adipose tissues, but decreased during the de-differentiation of adipocytic tumors, suggesting that the expression of CIDEC should be positively correlated with the differentiation of adipocytes. Furthermore, we verified that human CIDEC was localized on the surface of lipid droplets. Using human primary pre-adipocytes, we confirmed that the expression of CIDEC was elevated during the differentiation of pre-adipocytes, and knockdown of CIDEC in human primary pre-adipocytes resulted in differentiation defects. These data demonstrate that CIDEC is essential for the differentiation of adipose tissue. Together with regulating adipocyte lipid metabolism, CIDEC should be a potential target for regulating adipocyte differentiation and reducing fat cell mass.  相似文献   

6.
7.
The hepatic expression of the cell death–inducing DNA fragmentation factor A–like effector family (CIDEA, CIDEB, and CIDEC) genes is markedly upregulated in mouse models of obesity. We evaluated the expression of CIDE genes in liver of obese human subjects undergoing gastric bypass surgery (GBS), at the time of surgery and again 1 year later when subjects had lost 37.6 ± 1.4% of their initial body weight. At the time of GBS, the expression of CIDEA (r2 = 0.20, P = 0.04) and CIDEC (r2 = 0.32, P = 0.01) was strongly correlated with BMI, whereas CIDEB was not (r2 = 0.01, P = 0.81). One year after surgery, CIDEC expression had declined over 60% (P = 0.02), whereas CIDEA expression did not change (P = 0.20). These data demonstrate that, consistent with previous studies conducted in rodents, hepatic expression of CIDEA and CIDEC, but not CIDEB, is increased in obese humans. Moreover, the hepatic expression of CIDEC is downregulated by marked weight loss.  相似文献   

8.
9.
Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes,fatty liver and cardiovascular diseases.The lipid droplet(LD)is an important subcellular organelle responsible for lipid storage.We previously observed that Fsp27,a member of the CIDE family proteins,is localized to LD-contact sites and promotes atypical LD fusion and growth.Cidea,a close homolog of Fsp27,is expressed at high levels in brown adipose tissue.However,the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown.Here,we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth.Next,we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype.In addition,Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold.Furthermore,we observed that the brown and white adipose tissues of Cidea/Fsp27double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27single deficient mice.Overall,these data reveal an important role of Cidea in controlling lipid droplet fusion,lipid storage in brown and white adipose tissue,and the development of obesity.  相似文献   

10.
The fat-specific protein 27 (Fsp27), a protein localized to lipid droplets (LDs), plays an important role in controlling lipid storage and mitochondrial activity in adipocytes. Fsp27-null mice display increased energy expenditure and are resistant to high fat diet-induced obesity and diabetes. However, little is known about how the Fsp27 protein is regulated. Here, we show that Fsp27 stability is controlled by the ubiquitin-dependent proteasomal degradation pathway in adipocytes. The ubiquitination of Fsp27 is regulated by three lysine residues located in the C-terminal region. Substitution of these lysine residues with alanines greatly increased Fsp27 stability and enhanced lipid storage in adipocytes. Furthermore, Fsp27 was stabilized and rapidly accumulated following treatment with β-agonists that induce lipolysis and fatty acid re-esterification in adipocytes. More importantly, Fsp27 stabilization was dependent on triacylglycerol synthesis and LD formation, because knockdown of diacylglycerol acyltransferase in adipocytes significantly reduced Fsp27 accumulation in adipocytes. Finally, we observed that increased Fsp27 during β-agonist treatment preferentially associated with LDs. Taken together, our data revealed that Fsp27 can be stabilized by free fatty acid availability, triacylglycerol synthesis, and LD formation. The stabilization of Fsp27 when free fatty acids are abundant further enhances lipid storage, providing positive feedback to regulate lipid storage in adipocytes.  相似文献   

11.
In order to explore the effects of fat-specific protein 27 (Fsp27) on regulation of hepatic stellate cell (HSC) activation and liver fibrosis. HSCs were isolated from rat liver tissues and cultivated in vitro for gene expression and lentivirus infection. CCK-8 cell viability assay, immunofluorescence staining, qRT-PCR, and western blot assays were used to assess phenotypic changes and gene expression in HSCs. The rat liver fibrosis model was produced by intraperitoneal injection of carbon tetrachloride for assessing the effects of Fsp27 in the rat liver. Gene expression was then detected by immunohistochemistry and ELISA assays. The results of the study showed that Fsp27 was constitutively expressed in primary quiescent HSCs, but was absent in activated HSCs. Ectopic expression of Fsp27 significantly inhibited HSC proliferation and activation, as well as expression of α-smooth muscle actin. Fsp27 expression also significantly reduced collagen I production and matrix metalloproteinases 2 protein levels, and to a lesser degree, reduced tissue inhibitors of metalloproteinases 1 expression. In vivo data showed that ectopic expression of Fsp27 protein significantly reduced levels of hydroxyproline in liver tissue, and decreased serum levels of collagen III and hyaluronic acid, which in turn, suppressed liver fibrosis in rats. From these findings, it can be concluded that Fsp27 expression suppressed HSC activation in vitro and liver fibrogenesis in vivo. Further studies are needed to explore whether expression of Fsp27 can be selected as a potential novel strategy for anti-fibrotic therapy against liver fibrosis.  相似文献   

12.
Toh SY  Gong J  Du G  Li JZ  Yang S  Ye J  Yao H  Zhang Y  Xue B  Li Q  Yang H  Wen Z  Li P 《PloS one》2008,3(8):e2890
Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/-) mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs) from wildtype and Fsp27(-/-) mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT) and white adipose tissue (WAT) and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27(-/-) mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27(-/-)and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27(-/-) mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1alpha were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27(-/-) mice. Remarkably, Fsp27(-/-) MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3). Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity.  相似文献   

13.
构建脂肪特异性蛋白27(Fat-specific protein of 27,Fsp27)基因沉默载体,研究沉默Fsp27基因表达对3T3-L1细胞脂解的影响,并对其作用机制进行探究。采用RNAi技术,构建Fsp27基因真核干扰载体,下调Fsp27基因的表达。“鸡尾酒”法诱导3T3-L1前脂肪细胞分化为成熟脂肪细胞。脂质体转染脂肪细胞,油红O染色脂滴,酶法测定细胞中甘油及甘油三酯的含量。Western blot法检测细胞中Fsp27、HSL、ATGL和PPARγ的蛋白表达。Western blot结果显示:阳性sh-Fsp27干扰载体均能有效下调Fsp27的表达,且伴随细胞内ATGL和PPARγ的表达量升高(P<0.05),其中sh-Fsp27-2的沉默效果最好;酶学方法检测结果显示:阳性sh-Fsp27干扰组细胞中甘油三酯含量下降,甘油含量升高(P<0.05);油红O染色结果发现:空白对照组与阴性对照组均有大脂滴堆积,阳性sh-Fsp27组小脂滴分布广泛,未见明显的大脂滴。sh-Fsp27-2组基因沉默载体的沉默效果最好,Fsp27基因沉默可以加快3T3-L1细胞的脂解速率,其主要是通过抑制脂滴融合和增强ATGL酶的水解来完成对脂解的调控。  相似文献   

14.
Human cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector C (CIDEC) is a potent apoptotic inducer. Previous studies have indicated that the Fat-specific protein 27 (Fsp27), a mouse homolog of CIDEC, induces apoptosis via caspase-3, -7, and -9 and triggers the release of cytochrome c from mitochondria, which implies that the mitochondrial pathway is involved in Fsp27-induced apoptosis. In the current study, we found that CIDEC-induced apoptosis was mediated by caspase-8. The caspase inhibitor assay showed that CIDEC-induced apoptosis was dramatically reduced in the presence of the general caspase inhibitor, the caspase-3 inhibitor, and the caspase-8 inhibitor, whereas the caspase-9 inhibitor only weakly inhibited CIDEC-induced apoptosis. These results confirmed that the activation of caspase-3 and caspase-8 were involved in CIDEC-induced apoptosis. Moreover, in caspase-3- or caspase-8-deficient cells, CIDEC-induced apoptosis were dramatically decreased, which demonstrated that CIDEC-induced apoptosis might require the activation of caspase-3 and caspase-8. Because caspase-8 in general is a key effecter of death-receptor pathway and activated by Fas-Associated protein with Death Domain (FADD), we examined whether FADD was involved in CIDEC-induced apoptosis. Our results demonstrated that CIDEC-induced apoptosis was independent of FADD, suggesting that CIDEC-induced apoptosis might be in a death-receptor-independent, caspase-8-dependent manner. It was also found that the region of amino acid 168-200 in carboxyl domain of CIDEC was critical for its crucial pro-apoptotic function.  相似文献   

15.
16.
目的:Fsp27已经被证明定位在脂滴上并且介导脂滴融合与增大。为研究Fsp27介导脂滴融合的动态分子机制,我们构建了Fsp27-mMaple3和Fsp27-mEos3.2两种新型荧光探针的融合蛋白并研究其对脂滴融合的功能影响,进而为研发Fsp27相关生理功能的光学显像技术奠定基础。方法:对照传统绿色荧光的融合蛋白Fsp27-EGFP,在共聚焦显微镜下观察Fsp27-mMaple3和Fsp27-mEos3.2两种新型融合蛋白的亚细胞定位和介导脂滴融合的功能,并利用荧光漂白恢复术(fluorescence recovery after photo-bleaching,FRAP)以判断脂滴与脂滴之间是否存在脂的交换。结果:表达Fsp27-mMaple3和Fsp27-mEos3.2两种新型融合蛋白的细胞中脂滴显著增大;同时,融合蛋白皆集中在脂滴与脂滴的接触位点上,且中性脂的交换实验显示脂滴与脂滴之间可以相互连通。结论:我们建构的两种新型荧光探针融合蛋白Fsp27-mMaple3和Fsp27-mEos3.2保持了Fsp27介导脂滴融合的功能,并为我们进一步研发新型的超分辨光学显像技术提供功能基础。  相似文献   

17.
The liver plays a central role in regulating lipid metabolism and facilitates efficient lipid utilization and storage. We discovered that a modest increase in maternal dietary fat in mice programs triglyceride storage in the liver of their developing offspring. The activation of this programming is not apparent, however, until several months later at the adult stage. We found that the perinatal programming of adult hepatic triglyceride storage was controlled by the eIF2α kinase GCN2 (EIF2AK4) in the brain of the offspring, which stimulates epigenetic modification of the Pparγ2 gene in the neonatal liver. Genetic ablation of Gcn2 in the offspring exhibited reduced hepatic triglyceride storage and repressed expression of the peroxisome proliferator-activated receptor gamma 2 (Pparγ2) and two lipid droplet protein genes, Fsp27 and Cidea. Brain-specific, but not liver-specific, Gcn2 KO mice exhibit these same defects demonstrating that GCN2 in the developing brain programs hepatic triglyceride storage. GCN2 and nutrition-dependent programming of Pparγ2 is correlated with trimethylation of lysine 4 of histone 3 (H3K4me3) in the Pparγ2 promoter region during neonatal development. In addition to regulating hepatic triglyceride in response to modest changes in dietary fat, Gcn2 deficiency profoundly impacts the severity of the obese-diabetic phenotype of the leptin receptor mutant (db/db) mouse, by reducing hepatic steatosis and obesity but exacerbating the diabetic phenotype. We suggest that GCN2-dependent perinatal programming of hepatic triglyceride storage is an adaptation to couple early nutrition to anticipated needs for hepatic triglyceride storage in adults. However, increasing the hepatic triglyceride set point during perinatal development may predispose individuals to hepatosteatosis, while reducing circulating fatty acid levels that promote insulin resistance.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号