首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Pan F  Xiao P  Guo Y  Liu YJ  Deng HY  Recker RR  Deng HW 《Human genetics》2008,123(4):419-427
Late age at menarche (AAM), an important type of endocrinopathy in females, is associated with lower bone mineral density (BMD), a major risk factor for osteoporosis. The correlation is mainly mediated through common genetic factors, which are largely unknown. A bivariate genome-wide linkage scan was conducted on 2,522 females from 414 Caucasian pedigrees to identify quantitative trait loci influencing both AAM and BMD. The strongest linkage signal was detected on chromosome 22q13. Other regions such as the 3q13, 3p25, 7p15, and 15q13 were also suggested. The inferred promising candidate genes in the linkage regions may contribute to our understanding of pathogenesis of endocrinopathy and osteoporosis in females.  相似文献   

2.
Sun L  Tan LJ  Lei SF  Chen XD  Li X  Pan R  Yin F  Liu QW  Yan XF  Papasian CJ  Deng HW 《PloS one》2011,6(11):e27325

Objective

Femoral neck geometric parameters (FNGPs), such as periosteal diameter (W), cross-sectional area (CSA), cortical thickness (CT), buckling ratio (BR), and section modulus (Z), are highly genetically correlated with body lean mass. However, the specific SNPs/genes shared by these phenotypes are largely unknown.

Methods

To identify the specific SNPs/genes shared between FNGPs and appendicular lean mass (ALM), we performed an initial bivariate genome-wide association study (GWAS) by scanning ∼690,000 SNPs in 1,627 unrelated Han Chinese adults (802 males and 825 females) and a follow-up replicate study in 2,286 unrelated US Caucasians.

Results

We identified 13 interesting SNPs that may be important for both FNGPs and ALM. Two SNPs, rs681900 located in the HK2 (hexokinase 2) gene and rs11859916 in the UMOD (uromodulin) gene, were bivariately associated with FNGPs and ALM (p = 7.58×10−6 for ALM-BR and p = 2.93×10−6 for ALM-W, respectively). The associations were then replicated in Caucasians, with corresponding p values of 0.024 for rs681900 and 0.047 for rs11859916. Meta-analyses yielded combined p values of 3.05×10−6 and 2.31×10−6 for rs681900 and rs11859916, respectively. Our findings are consistent with previous biological studies that implicated HK2 and UMOD in both FNGPs and ALM. Our study also identified a group of 11 contiguous SNPs, which spanned a region of ∼130 kb, were bivariately associated with FNGPs and ALM, with p values ranging from 3.06×10−7 to 4.60×10−6 for ALM-BR. The region contained two neighboring miRNA coding genes, MIR873 (MicroRNA873) and MIR876 (MicroRNA876).

Conclusion

Our study implicated HK2, UMOD, MIR873 and MIR876, as pleiotropic genes underlying variation of both FNGPs and ALM, thus suggesting their important functional roles in co-regulating both FNGPs and ALM.  相似文献   

3.
4.
Lean body mass (LBM) and age at menarche (AAM) are two important complex traits for human health. The aim of this study was to identify pleiotropic genes for both traits using a powerful bivariate genome-wide association study (GWAS). Two studies, a discovery study and a replication study, were performed. In the discovery study, 909622 single nucleotide polymorphisms (SNPs) were genotyped in 801 unrelated female Han Chinese subjects using the Affymetrix human genome-wide SNP array 6.0 platform. Then, a bivariate GWAS was performed to identify the SNPs that may be important for LBM and AAM. In the replication study, significant findings from the discovery study were validated in 1692 unrelated Caucasian female subjects. One SNP rs3027009 that was bivariately associated with left arm lean mass and AAM in the discovery samples (P=7.26×10?6) and in the replication samples (P=0.005) was identified. The SNP is located at the upstream of DARC (Duffy antigen receptor for chemokines) gene, suggesting that DARC may play an important role in regulating the metabolisms of both LBM and AAM.  相似文献   

5.

Background

Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically.

Principal Findings

To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene''s dual role in both bone and fat.

Conclusions

Our findings, together with the prior biological evidence, suggest the SOX6 gene''s importance in co-regulation of obesity and osteoporosis.  相似文献   

6.
研究组前期的全基因组关联研究发现PHACTR3基因与骨折关联,为了检测该基因与骨密度的关联关系,采用精细定位关联研究来检测PHACTR3基因内及其附近的SNPs与骨密度的关系。首先在中国样本(1627个不相关的汉族样本)和美国样本(2286个不相关高加索样本)中对PHACTR3基因的140个SNPs进行基因分型,然后采用Plink软件检测PHACTR3基因与腰椎和髋部骨密度的关联关系。发现研究组以前报道的与骨折关联的SNPs rs1555364和rs6064822与腰椎和髋部骨密度关联(P=4.89×10^-2-1.26×10^-2)。另外还发现位于PHACTR3基因内含子中3个SNPs位点(rs6027138,rs1182531和rs1182532)与中国人群和白人腰椎骨密度均显著关联,将中国人与白人样本合并起来进行荟萃分析(Meta—analysis),得到合并P值为1.40×10^-3到4.00×10^-4,另外发现rs6064820与髋部BMD相关联,合并P值为6.70×10^-3。本研究进一步证实了PHACTR3基因在骨密度变异中的作用,对骨质疏松发病机制的认识提供了新的理论依据。  相似文献   

7.
For females, menarche is a most significant physiological event. Age at menarche (AAM) is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS) examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects—all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan), which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR) q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09×10−3 and 4.37×10−3, respectively, in the Chinese cohort and combined p values (obtained by Fisher's method) of 5.19×10−5 and 1.02×10−4, respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2), a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM.  相似文献   

8.
Osteoporosis is a common disease characterized by low bone mass, decreased bone quality and increased predisposition to fracture. Genetic factors have been implicated in its etiology; however, the specific genes related to susceptibility to osteoporosis are not entirely known. To detect susceptibility genes for osteoporosis, we conducted a genome-wide association study in Japanese using ∼270,000 SNPs in 1,747 subjects (190 cases and 1,557 controls) followed by multiple levels of replication of the association using a total of ∼5,000 subjects (2,092 cases and 3,114 controls). Through these staged association studies followed by resequencing and linkage disequilibrium mapping, we identified a single nucleotide polymorphism (SNP), rs7605378 associated with osteoporosis. (combined P = 1.51×10−8, odds ratio = 1.25). This SNP is in a previously unknown gene on chromosome 2q33.1, FONG. FONG is predicted to encode a 147 amino-acid protein with a formiminotransferase domain in its N-terminal (FTCD_N domain) and is ubiquitously expressed in various tissues including bone. Our findings would give a new insight into osteoporosis etiology and pathogenesis.  相似文献   

9.
10.
Low bone mineral density (BMD) is a risk factor of osteoporosis and has strong genetic determination. Genes influencing BMD and fundamental mechanisms leading to osteoporosis have yet to be fully determined. Peripheral blood monocytes (PBM) are potential osteoclast precursors, which could access to bone resorption surfaces and differentiate into osteoclasts to resorb bone. Herein, we attempted to identify osteoporosis susceptibility gene(s) and characterize their function(s), through an initial proteomics discovery study on PBM in vivo, and multiscale validation studies in vivo and in vitro. Utilizing the quantitative proteomics methodology LC-nano-ESI-MS(E), we discovered that a novel protein, i.e. ANXA2, was up-regulated twofold in PBM in vivo in Caucasians with extremely low BMD (cases) versus those with extremely high BMD (controls) (n = 28, p < 0.05). ANXA2 gene up-regulation in low BMD subjects was replicated at the mRNA level in PBM in vivo in a second and independent case-control sample (n = 80, p < 0.05). At the DNA level, we found that SNPs in the ANXA2 gene were associated with BMD variation in a 3(rd) and independent case-control sample (n = 44, p < 0.05), as well as in a random population sample (n = 997, p < 0.05). The above integrative evidence strongly supports the concept that ANXA2 is involved in the pathogenesis of osteoporosis in humans. Through a follow-up cellular functional study, we found that ANXA2 protein significantly promoted monocyte migration across an endothelial barrier in vitro (p < 0.001). Thus, elevated ANXA2 protein expression level, as detected in low BMD subjects, probably stimulates more PBM migration through the blood vessel walls to bone resorption surfaces in vivo, where they differentiate into higher number of osteoclasts and resorb bone at higher rates, thereby decreasing BMD. In conclusion, this study identified a novel osteoporosis susceptibility gene ANXA2, and suggested a novel pathophysiological mechanism, mediated by ANXA2, for osteoporosis in humans.  相似文献   

11.
The EphB2 gene has been implicated as a tumor suppressor gene somatically altered in both prostate cancer (PC) and colorectal cancer. We have previously shown an association between an EphB2 germline nonsense variant and risk of familial prostate cancer among African American Men (AAM). Here we set out to test the hypothesis that common variation within the EphB2 locus is associated with increased risk of sporadic PC in AAM. We genotyped a set of 341 single nucleotide polymorphisms (SNPs) encompassing the EphB2 locus, including known and novel coding and noncoding variants, in 490 AA sporadic PC cases and 567 matched controls. Single marker-based logistical regression analyses revealed seven EphB2 SNPs showing statistically significant association with prostate cancer risk in our population. The most significant association was achieved for a novel synonymous coding SNP, TGen-624, (Odds Ratio (OR) =?0.22; 95% Confidence Interval (CI) 0.08-0.66, p?=?1×10(-5)). Two other SNPs also show significant associations toward a protective effect rs10465543 and rs12090415 (p?=?1×10(-4)), OR?=?0.49 and 0.7, respectively. Two additional SNPs revealed trends towards an increase in risk of prostate cancer, rs4612601 and rs4263970 (p?=?0.001), OR?=?1.35 and 1.31, respectively. Furthermore, haplotype analysis revealed low levels of linkage disequilibrium within the region, with two blocks being associated with prostate cancer risk among our population. These data suggest that genetic variation at the EphB2 locus may increase risk of sporadic PC among AAM.  相似文献   

12.
Myocardial infarction (MI) is a common complex disease with a genetic component. While several single nucleotide polymorphisms (SNPs) have been reported to be associated with risk of MI, they do not fully explain the observed genetic component of MI. We have been investigating the association between MI and SNPs that are located in genes and have the potential to affect gene function or expression. We have previously published studies that tested about 12,000 SNPs for association with risk of MI, early-onset MI, or coronary stenosis. In the current study we tested 17,576 SNPs that could affect gene function or expression. In order to use genotyping resources efficiently, we staged the testing of these SNPs in three case-control studies of MI. In the first study (762 cases, 857 controls) we tested 17,576 SNPs and found 1,949 SNPs that were associated with MI (P<0.05). We tested these 1,949 SNPs in a second study (579 cases and 1159 controls) and found that 24 SNPs were associated with MI (1-sided P<0.05) and had the same risk alleles in the first and second study. Finally, we tested these 24 SNPs in a third study (475 cases and 619 controls) and found that 5 SNPs in 4 genes (ENO1, FXN (2 SNPs), HLA-DPB2, and LPA) were associated with MI in the third study (1-sided P<0.05), and had the same risk alleles in all three studies. The false discovery rate for this group of 5 SNPs was 0.23. Thus, we have identified 5 SNPs that merit further examination for their potential association with MI. One of these SNPs (in LPA), has been previously shown to be associated with risk of cardiovascular disease in other studies.  相似文献   

13.
Osteoporosis is a multifactorial disease in which genetic determinants are modulated by hormonal, environmental and nutritional factors. An important clinical risk factor in the pathogenesis of osteoporosis is the presence of genetics polymorphism in/around susceptibility genes/regions. This study explored whether the region of 4q22.1, which confers risk of developing osteoporosis in some populations, associated with bone mineral density and osteoporosis susceptibility in postmenopausal women of Han Chinese. We investigated 32 SNPs with minor allele frequencies ≥0.05 between 20 kb upstream and 20 kb downstream (40 kb window) of rs6532023, mapping in the 4q22.1 region, which was reported to be significantly associated with osteoporosis in previous studies. We found that rs6532023 was significantly associated with bone mineral density and osteoporosis (corrected p = 0.015) in our sample, including 440 cases and 640 controls, and allele G was supposed as a risk factor while T worked as a protective factor. Further genotype association analyses suggested a similar pattern (corrected p = 0.040). Additionally, analyses by haplotypes indicated that a haplotype block rs7683315-rs6532023-rs1471400-rs1471403 in the region associated with bone mineral density and osteoporosis (global p = 0.032), and risk haplotype A-G-G-C had almost 1.5-fold increased in the cases. To our knowledge, this is the first report to examine 4q22.1 region polymorphisms and osteoporosis in Han Chinese. Our results provide further evidence for an effect of the region of 4q22.1 on the etiology of osteoporosis and suggest that 4q22.1 may be a genetic risk factor for bone mineral density and osteoporosis.  相似文献   

14.
Single nucleotide polymorphisms (SNPs) are the most common form of human genetic variation. Non-synonymous SNPs (nsSNPs) change an amino acid. Organic anion transporters (OATs) play an important role in eliminating or reabsorbing endogenous and exogenous organic anionic compounds. Among OATs, hOAT4 mediates high affinity transport of estrone sulfate and dehydroepiandrosterone sulfate. The rapid bone loss that occurs in post-menopausal women is mainly due to a net decrease of estrogen. In the present study we searched for SNPs within the exon regions of hOAT4 in Korean women osteoporosis patients. Fifty healthy subjects and 50 subjects with osteoporosis were screened for genetic polymorphism in the coding region of SLC22A11 (hOAT4) using GC-clamp PCR and denaturing gradient gel electrophoresis (DGGE). We found three SNPs in the hOAT4 gene. Two were in the osteoporosis group (C483A and G832A) and one in the normal group (C847T). One of the SNPs, G832A, is an nsSNP that changes the 278th amino acid from glutamic acid to lysine (E278K). Uptake of [3H] estrone sulfate by oocytes injected with the hOAT4 E278K mutant was reduced compared with wild-type hOAT4. Km values for wild type and E278K were 0.7 microM and 1.2 microM, and Vmax values were 1.8 and 0.47 pmol/oocyte/h, respectively. The present study demonstrates that hOAT4 variants can causing inter-individual variation in anionic drug uptake and, therefore, could be used as markers for certain diseases including osteoporosis.  相似文献   

15.
Osteoporosis is the most common multifactorial metabolic bone disorder worldwide with a strong genetic component. In this review, the evidence for a genetic contribution to osteoporosis and related phenotypes is summarized alongside with methods used to identify osteoporosis susceptibility genes. The key biological pathways involved in the skeleton and bone development are discussed with a particular focus on master genes clustered in these pathways and their mode of action. Furthermore, the most studied single nucleotide polymorphisms(SNPs) analyzed for their importance as genetic markers of the disease are presented. New data generated by nextgeneration sequencing in conjunction with extensive meta-analyses should contribute to a better understanding of the genetic basis of osteoporosis and related phenotype variability. These data could be ultimately used for identifying at-risk patients for disease prevention by both controlling environmental factors and providing possible therapeutic targets.  相似文献   

16.
BackgroundOsteoporosis is caused by excessive bone resorption (by osteoclasts) over bone formation (by osteoblasts). Monocytes are important to osteoporosis by serving as progenitors of osteoclasts and produce cytokines for osteoclastogenesis.AimTo identify osteoporosis-related genes, we performed microarray analyses of monocytes using Affymetrix 1.0 ST arrays in 42 (including 16 pre- and 26 postmenopausal) high hip BMD (bone mineral density) vs. 31 (including 15 pre- and 16 postmenopausal) low hip BMD Caucasian female subjects. Here, high vs. low BMD is defined as belonging to top vs. bottom 30% of BMD values in population.MethodDifferential gene expression analysis in high vs. low BMD subjects was conducted in the total cohort as well as pre- and post-menopausal subjects. Focusing on the top differentially expressed genes identified in the total, the pre- and the postmenopausal subjects (with a p <5E-03), we performed replication of the findings in 3 independent datasets of microarray analyses of monocytes (total N = 125).ResultsWe identified (in the 73 subjects) and successfully replicated in all the 3 independent datasets 2 genes, DAXX and PLK3. Interestingly, both genes are apoptosis induction genes and both down-regulated in the low BMD subjects. Moreover, using the top 200 genes identified in the meta-analysis across all of the 4 microarray datasets, GO term enrichment analysis identified a number of terms related to induction of apoptosis, for which the majority of component genes are also down-regulated in the low BMD subjects. Overall, our result may suggest that there might be a decreased apoptosis activity of monocytes in the low BMD subjects.ConclusionOur study for the first time suggested a decreased apoptosis rate (hence an increased survival) of monocytes, an important osteoclastogenic cell, as a novel mechanism for osteoporosis.  相似文献   

17.
DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10−4, β: −0.018 for allele C), rs7553831 (P = 1.30×10−4, β: −0.018 for allele T), and rs6697469 (P = 1.59×10−3, β: −0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10−4, β: −0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn’t observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.  相似文献   

18.
Parathyroid hormone gene with bone phenotypes in Chinese   总被引:3,自引:0,他引:3  
Osteoporosis is a common disorder afflicting old people. The parathyroid hormone (PTH) gene is involved in bone remodeling and calcium homeostasis, and has been considered as an important candidate gene for osteoporosis. In this study, we simultaneously tested linkage and/or association of PTH gene with bone mineral density (BMD) and bone mineral content (BMC), two important risk factors for osteoporosis. A sample of 1263 subjects from 402 Chinese nuclear families was used. The families are composed of both parents and at least one healthy daughter aged from 20 to 45 years. All the subjects were genotyped at the polymorphic BstBI site inside the intron 2 of the PTH gene (a nucleotide substitution of G to A at the position +3244). BMD and BMC were measured at the lumbar spine and the hip region via dual-energy X-ray absorptiometry (DXA). Using QTDT (quantitative trait transmission disequilibrium test), we did not find significant results for association or linkage between the PTH gene and BMD or BMC variation at the spine or hip. Our data do not support the PTH gene as a quantitative trait locus (QTL) underlying the bone phenotypic variation in the Chinese population.  相似文献   

19.
Graves' (GD) hyperthyroidism induces accelerated bone turnover that leads to decreased bone mineral density (BMD). The role of the VDR gene in predisposition to primary osteoporosis has been recognized. Recent studies show associations between the VDR gene polymorphisms and susceptibility to autoimmune diseases. Here we analyzed if VDR gene polymorphisms: BsmI, ApaI, TaqI, and FokI may predispose women with Graves' hyperthyroidism to BMD reduction or to disease development. The subjects were 75 premenopausal female Polish patients with GD and 163 healthy women. The genotyping was performed by the use of the restriction fragment length polymorphism analysis (RFLP). We studied the association of the VDR polymorphisms and their haplotypes with patients' BMD and also SNPs and haplotypes association with Graves' disease. We found a strong linkage disequilibrium for the BsmI, ApaI, and TaqI polymorphims that formed three most frequent haplotypes in Graves' women: baT (47.9%), BAt (34.9%), and bAT (16.4%). We did not show statistically significant association of analyzed VDR polymorphisms or haplotypes with decreased bone mineral density in Graves' patients. However, the presence of F allele had a weak tendency to be associated with Graves' disease (with OR=1.93; 95% CI: 0.97-3.84; p=0.058). In conclusion: VDR gene polymorphisms do not predict the risk of decreased BMD in Polish women with Graves'. It may be speculated that the F allele carriers of the VDR-FokI polymorphism are predisposed to Graves' disease development.  相似文献   

20.
Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08×10−9, odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP''s relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39×10−6), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号