首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Fluorescence spectroscopy was used to study denaturation of cAMP-dependent protein kinase catalytic subunit labeled with an acrylodan moiety. The dye was covalently bound to a cystein residue introduced into the enzyme by replacement of arginine in position 326 in the native sequence, located near the enzyme active center. This labeling had no effect on catalytic activity of the enzyme, but provided possibility to monitor changes in protein structure through measuring the fluorescence spectrum of the dye, which is sensitive to changes in its environment. This method was used to monitor denaturation of the protein kinase catalytic subunit and study the kinetics of this process as well as influence of specific ligands on stability of the protein. Stabilization of the enzyme structure was observed in the presence of adenosine triphosphate, peptide substrate RRYSV and inhibitor peptide PKI[5-24].  相似文献   

2.
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.  相似文献   

3.
4.
cAMP-dependent protein kinase (PKA) is a major modulator of synaptic transmission likely to be involved in molecular and cellular events leading to epileptogenesis, but little is known about how it affects the onset of acute epileptic seizures. In this study, we determined PKA enzymatic activity in the rat hippocampus during picrotoxin-induced seizures, using H-9 dihydrochloride, a PKA inhibitor, to investigate the in vivo effects of this enzyme on seizures induced by picrotoxin microdialysis in the rat hippocampus. No significant modifications were found in PKA activity during seizures as compared to control rats, but H-9 dihydrochloride microperfusion (100 μM) prevented picrotoxin seizures in 50% of the animals and significantly reduced the mean number of seizures and mean seizure duration. These results suggest that acute picrotoxin-induced seizures occur without an increase in hippocampal PKA activity, but reduced PKA-mediated phosphorylation protects against picrotoxin seizures, probably by increasing the inhibitory potential of GABAA receptors. The possibility of other targets for H-9 dihydrochloride, such as PKC, PKG or CAMKII, however, cannot be ruled out.  相似文献   

5.
Substantial evidence has indicated that cAMP-dependent protein kinase (protein kinase A orPKA) plays a critical role in maintaining meiotic prophase arrest in vertebrate oocytes.However, PKA activity dynamic and its physiological substrate profile remain poorly defined.We have recently developed a novel PKA substrate construct which we employ to monitor PKAactivity in live oocytes. In the current study, we have employed biochemical and imaginganalyses of single cells to determine PKA activity dynamics during oocyte maturation and toinvestigate the consequence of re-activation of PKA during oocyte maturation. Wedemonstrated here that progesterone caused a rapid and permanent inhibition of PKA during theentire maturation process. However, artificial reactivation of endogenous PKA had differentialconsequences, depending on the timing of PKA reactivation. Reactivation of endogenous PKAat any time prior to GVBD inhibited progesterone-induced GVBD. PKA reactivation at GVBD,or thereafter, did not interfere with meiosis I to meiosis II transition, nor did it interfere withmetaphase II arrest. These results demonstrate for the first time a PKA-restricted phase and aPKA-permissive phase during oocyte maturation.  相似文献   

6.
The members of the PKA regulatory subunit family (PKA-R family) were analyzed by multiple sequence alignment and clustering based on phylogenetic tree construction. According to the phylogenetic trees generated from multiple sequence alignment of the complete sequences, the PKA-R family was divided into four subfamilies (types I to IV). Members of each subfamily were exclusively from animals (types I and II), fungi (type III), and alveolates (type IV). Application of the same methodology to the cAMP-binding domains, and subsequently to the region delimited by β-strands 6 and 7 of the crystal structures of bovine RIα and rat RIIβ (the phosphate-binding cassette; PBC), proved that this highly conserved region was enough to classify unequivocally the members of the PKA-R family. A single signature sequence, F–G–E–[LIV]–A–L–[LIMV]–x(3)–[PV]–R–[ANQV]–A, corresponding to the PBC was identified which is characteristic of the PKA-R family and is sufficient to distinguish it from other members of the cyclic nucleotide-binding protein superfamily. Specific determinants for the A and B domains of each R-subunit type were also identified. Conserved residues defining the signature motif are important for interaction with cAMP or for positioning the residues that directly interact with cAMP. Conversely, residues that define subfamilies or domain types are not conserved and are mostly located on the loop that connects α-helix B′ and β strand 7. Received: 2 November 2000/Accepted: 14 June 2001  相似文献   

7.
A rapid and efficient method for purifying cAMP-dependent protein kinase (PKA) holoenzyme based on immunoaffinity chromatography was developed. The affinity column was prepared by coupling a polyclonal antibody raised against the PKA regulatory subunit to NHS-activated Sepharose. The holoenzyme purified by this procedure from the bivalve molluskMytilus galloprovincialiswas shown to be fully active as judged by (1) its cAMP-binding activity, (2) its cAMP-dependent protein kinase activity, and (3) its autophosphorylation ability. Moreover, together with both regulatory and catalytic subunits, which constitute the PKA holoenzyme, a protein with a molecular mass of approximately 200 kDa was copurified, and results from gel-filtration chromatography showed that it was associated with a fraction of PKA. Therefore, this immunoaffinity purification technique could also be useful to isolate such proteins as interact with PKAin vivo.  相似文献   

8.
The catalytic (C) subunit of cAMP-dependent protein kinase [protein kinase A (PKA)] is a major target of cAMP signaling, and its regulation is of fundamental importance to biological processes. One mode of regulation is N-myristylation, which has eluded structural and functional characterization so far because most crystal structures are of the non-myristylated enzyme, are phosphorylated on Ser10, and generally lack electron density for the first 13 residues. We crystallized myristylated wild-type (WT) PKA and a K7C mutant as binary (bound to a substrate peptide) and ternary [bound to a substrate peptide and adenosine-5′-(β,γ-imido)triphosphate] complexes. There was clear electron density for the entire N-terminus in the binary complexes, both refined to 2.0 Å, and K7C ternary complex, refined to 1.35 Å. The N-termini in these three structures display a novel conformation with a previously unseen helix from residues 1 to 7. The K7C mutant appears to have a more stable N-terminus, and this correlated with a significant decrease in the B-factors for the N-terminus in the myr-K7C complexes compared to the WT binary complex. The N-terminus of the myristylated WT ternary complex, refined to 2.0 Å, was disordered as in previous structures. In addition to a more ordered N-terminus, the myristylated K7C mutant exhibited a 53% increase in kcat. The effect of nucleotide binding on the structure of the N-terminus in the WT protein and the kinetic changes in the K7C protein suggest that myristylation or occupancy of the myristyl binding pocket may serve as a site for allosteric regulation in the C-subunit.  相似文献   

9.
We have determined the chromosomal localization of the gene for the catalytic subunit Cα of cAMP-dependent protein kinase (locus PRKACA) to human chromosome 19 using polymerase chain reaction (PCR) and Southern blot analysis of two different somatic cell hybrid mapping panels. In addition, PCR analysis of a chromosome 19 mapping panel revealed the presence of a human Cα-specific amplification product only in cell lines containing the region 19p13.1 to 19q12. Finally, two-color fluorescencein situhybridization to metaphase chromosomes using the human Cα cDNA and human chromosome 19 inter-Alu-PCR product as probes localized the human Cα gene to chromosome region 19p13.1.  相似文献   

10.
One-trial step-down inhibitory (passive) avoidance training is followed by two peaks of cAMP-dependent protein kinase (PKA) activity in rat CA1: one immediately after training and the other 3 h later. The second peak relies on the first: Immediate posttraining infusion into CA1 of the inhibitor of the regulatory subunit of PKA, Rp-cAMPS, at a dose that reduces PKA activity during less than 90 min, cancelled both peaks. Long-term memory (LTM) of this task measured at 24 h depends on the two peaks: Rp-cAMPS given into CA1 0 or 175 min posttraining, but not between those times, blocked LTM. However, the effect of immediate posttraining Rp-cAMPS on LTM could not be reversed by the activator of the regulatory subunit of PKA, Sp-cAMPS, given at 180 min, which suggests that, for LTM, the first peak may be more important than the second. When given at 0, 22, 45, or 90, but not at 175 min from training, Rp-cAMPS blocked short-term memory (STM) measured at 90 or 180 min. This effect of immediate posttraining Rp-cAMPS infusion on STM but not that on LTM was readily reversed by Sp-cAMPS infused 22 min later. On its own, Sp-cAMPS had effects exactly opposite to those of the inhibitor. It enhanced LTM when given at 0 or 175 min from training, and it enhanced STM when given at 0, 22, 45, or 90 min from training. These findings show that STM and LTM formation require separate PKA-dependent processes in CA1. STM relies on the continued activity of the enzyme during the first 90 min. LTM relies on the two peaks of PKA activity that occur immediately and 180 min posttraining.  相似文献   

11.
Dematin (band 4.9) is an F-actin binding and bundling protein best known for its role within red blood cells, where it both stabilizes as well as attaches the spectrin/actin cytoskeleton to the erythrocytic membrane. Here, we investigate the structural consequences of phosphorylating serine 381, a covalent modification that turns off F-actin bundling activity. In contrast to the canonical doctrine, in which phosphorylation of an intrinsically disordered region/protein confers affinity for another domain/protein, we found the converse to be true of dematin: phosphorylation of the well folded C-terminal villin-type headpiece confers affinity for its intrinsically disordered N-terminal core domain. We employed analytical ultracentrifugation to demonstrate that dematin is monomeric, in contrast to the prevailing view that it is trimeric. Next, using a series of truncation mutants, we verified that dematin has two F-actin binding sites, one in the core domain and the other in the headpiece domain. Although the phosphorylation-mimicking mutant, S381E, was incapable of bundling microfilaments, it retains the ability to bind F-actin. We found that a phosphorylation-mimicking mutant, S381E, eliminated the ability to bundle, but not bind F-actin filaments. Lastly, we show that the S381E point mutant caused the headpiece domain to associate with the core domain, leading us to the mechanism for cAMP-dependent kinase control of dematin''s F-actin bundling activity: when unphosphorylated, dematin''s two F-actin binding domains move independent of one another permitting them to bind different F-actin filaments. Phosphorylation causes these two domains to associate, forming a compact structure, and sterically eliminating one of these F-actin binding sites.  相似文献   

12.
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A.  相似文献   

13.
Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response.  相似文献   

14.
Calorie restriction is the only physiological intervention that extends lifespan throughout all kingdoms of life. In the budding yeast Saccharomyces cerevisiae, cytosolic pH (pHc) controls growth and responds to nutrient availability, decreasing upon glucose depletion. We investigated the interactions between glucose availability, pHc and the central nutrient signalling cAMP‐Protein Kinase A (PKA) pathway. Glucose abundance during the growth phase enhanced acidification upon glucose depletion, via modulation of PKA activity. This actively controlled reduction in starvation pHc correlated with reduced stationary phase survival. Whereas changes in PKA activity affected both acidification and survival, targeted manipulation of starvation pHc showed that cytosolic acidification was downstream of PKA and the causal agent of the reduced chronological lifespan. Thus, caloric restriction controls stationary phase survival through PKA and cytosolic pH.  相似文献   

15.
In the human lymphoblastic cell line KE 37, Northern blot analysis with cDNA probes for human regulatory subunits RIIα and RIIβ of the cAMP-dependent protein kinase (A-kinase) type II and immunoblotting or immunoprecipitation studies with several antibodies directed against RIIα and RIIβ show that these two isoforms are expressed. The major isoform α is mostly cytosolic, whereas the β isoform appears concentrated in the Golgi-centrosomal area, as judged by immunofluorescence and cell fractionation. Using a 32P-labeled RII overlay on Western blots, a 350-kDa RII-binding protein (AKAP 350) was specifically identified in centrosomes isolated from this cell line, whereas a Golgi fraction has previously been demonstrated to contain an 85-kDa RII-binding protein (AKAP 85). AKAP 350 is highly insoluble and can partially be extracted from centrosomes as a complex of AKAP 350 and RII subunit. AKAP 350 was identified as a specific centrosomal protein previously demonstrated in the pericentriolar material. The potential significance of a specific subcellular distribution for different RII-binding proteins in nonneuronal cells is discussed.  相似文献   

16.
17.

Background

Investigations into the regulation and functional roles of kinases such as cAMP-dependent protein kinase (PKA) increasingly rely on cellular assays. Currently, there are a number of bioluminescence-based assays, for example reporter gene assays, that allow the study of the regulation, activity, and functional effects of PKA in the cellular context. Additionally there are continuing efforts to engineer improved biosensors that are capable of detecting real-time PKA signaling dynamics in cells. These cell-based assays are often utilized to test the involvement of PKA-dependent processes by using H-89, a reversible competitive inhibitor of PKA.

Principal Findings

We present here data to show that H-89, in addition to being a competitive PKA inhibitor, attenuates the bioluminescence signal produced by Renilla luciferase (RLuc) variants in a population of cells and also in single cells. Using 10 µM of luciferase substrate and 10 µM H-89, we observed that the signal from RLuc and RLuc8, an eight-point mutation variant of RLuc, in cells was reduced to 50% (±15%) and 54% (±14%) of controls exposed to the vehicle alone, respectively. In vitro, we showed that H-89 decreased the RLuc8 bioluminescence signal but did not compete with coelenterazine-h for the RLuc8 active site, and also did not affect the activity of Firefly luciferase. By contrast, another competitive inhibitor of PKA, KT5720, did not affect the activity of RLuc8.

Significance

The identification and characterization of the adverse effect of H-89 on RLuc signal will help deconvolute data previously generated from RLuc-based assays looking at the functional effects of PKA signaling. In addition, for the current application and future development of bioluminscence assays, KT5720 is identified as a more suitable PKA inhibitor to be used in conjunction with RLuc-based assays. These principal findings also provide an important lesson to fully consider all of the potential effects of experimental conditions on a cell-based assay readout before drawing conclusions from the data.  相似文献   

18.
Protein kinases are important mediators of signal transduction in eukaryotic cells, and identifying the substrates of these enzymes is essential for a complete understanding of most signaling networks. In this report, novel substrate-binding variants of the cAMP-dependent protein kinase (PKA) were used to identify substrate domains required for efficient phosphorylation in vivo. Most wild-type protein kinases, including PKA, interact only transiently with their substrates. The substrate domains identified were distal to the sites of phosphorylation and were found to interact with a C-terminal region of PKA that was itself removed from the active site. Only a small set of PKA alterations resulted in a stable association with substrates, and the identified residues were clustered together within the hydrophobic core of this enzyme. Interestingly, these residues stretched from the active site of the enzyme to the C-terminal substrate-binding domain identified here. This spatial organization is conserved among the entire eukaryotic protein kinase family, and alteration of these residues in a second, unrelated protein kinase also resulted in a stable association with substrates. In all, this study identified distal sites in PKA substrates that are important for recognition by this enzyme and suggests that the interaction of these domains with PKA might influence specific aspects of substrate binding and/or release.PROTEIN kinases are key mediators of signal transduction in all eukaryotic cells. Each protein kinase modifies a distinct set of substrates, and the biological consequences of activating any kinase are the result of the collective actions of these target proteins (Hunter 2000; Manning et al. 2002). The ability to identify substrates is therefore essential for a complete understanding of most signaling pathways. Unfortunately, this identification process tends to be difficult, and few physiologically relevant targets are known for most protein kinases (Manning and Cantley 2002; Johnson and Hunter 2005). This situation may be changing as a number of innovative approaches to this problem have been developed in recent years (reviewed in Ptacek and Snyder 2006; Deminoff and Herman 2007; Ubersax and Ferrell 2007).This article is focused on the cAMP-dependent protein kinase (PKA) from the budding yeast, Saccharomyces cerevisiae. The PKA enzyme is found in all eukaryotes and is one of the most intensely studied members of this protein family (Taylor et al. 2005). PKA was the first protein kinase structure to be described, and its structure has provided essential insights into the general organization and catalytic mechanism of these enzymes (Knighton et al. 1991; Smith et al. 1999). Subsequent work has illustrated the conserved nature of the protein kinase core and the different ways that the activity of these enzymes can be regulated (Hunter 2000; Huse and Kuriyan 2002; Kannan and Neuwald 2005). In S. cerevisiae, PKA activity is a key regulator of cell growth and the response to environmental stress (Toda et al. 1985; Thevelein and De Winde 1999; Herman 2002; Schneper et al. 2004). We are interested in understanding the role of PKA in these processes and have identified a number of substrates for this enzyme (Howard et al. 2003; Chang et al. 2004; Budovskaya et al. 2005; Deminoff et al. 2006). One of the approaches used for this identification took advantage of PKA variants that exhibit a stable binding to substrate proteins (Deminoff et al. 2006). This binding is novel as most wild-type protein kinases, including PKA, interact only transiently with their substrates (Manning and Cantley 2002). Interestingly, one of these PKA variants was altered at a residue that is conserved in all protein kinases, suggesting that it might be possible to generate substrate-binding versions of other enzymes in this family.These variants of PKA were used here to explore the nature of the protein kinase–substrate interaction. These studies identified substrate domains distal to the sites of phosphorylation that were required for efficient recognition by the wild-type PKA, both in vitro and in vivo. These substrate domains were found to interact with a C-terminal region of PKA that is itself removed from the active site of the enzyme. A systematic mutagenesis of PKA identified additional residues that, when altered, resulted in a stable association with substrates. These latter residues are in close proximity in the three-dimensional structure and may link the active site with this C-terminal substrate-binding domain of PKA. Finally, we show that similar alterations within a second protein kinase, the mammalian double-stranded RNA-dependent protein kinase (PKR), also led to an increased affinity for substrates. In all, the data suggest that the interactions described here may be generally important for protein kinase function and models that explain potential roles for these substrate domains are discussed.  相似文献   

19.
Ubiquitination is a post-translational modification that tags proteins for proteasomal degradation. In addition, there is a growing appreciation that ubiquitination can influence protein activity and localization. Ste7 is a prototype MAPKK in yeast that participates in both the pheromone signaling and nutrient deprivation/invasive growth pathways. We have shown previously that Ste7 is ubiquitinated upon pheromone stimulation. Here, we show that the Skp1/Cullin/F-box ubiquitin ligase SCFCdc4 and the ubiquitin protease Ubp3 regulate Ste7 ubiquitination and signal specificity. Using purified components, we demonstrate that SCFCdc4 ubiquitinates Ste7 directly. Using gene deletion mutants, we show that SCFCdc4 and Ubp3 have opposing effects on Ste7 ubiquitination. Although SCFCdc4 is necessary for proper activation of the pheromone MAPK Fus3, Ubp3 is needed to limit activation of the invasive growth MAPK Kss1. Finally, we show that Fus3 phosphorylates Ubp3 directly and that phosphorylation of Ubp3 is necessary to limit Kss1 activation. These results reveal a feedback loop wherein one MAPK limits the ubiquitination of an upstream MAPKK and thereby prevents spurious activation of a second competing MAPK.  相似文献   

20.
Nonresolving inflammatory response from macrophages is a major characteristic of atherosclerosis. Macrophage ABCA1 has been previously shown to suppress the secretion of proinflammatory cytokine. In the present study, we demonstrate that ABCA1 also promotes the secretion of IL-10, an anti-inflammatory cytokine critical for inflammation resolution. ABCA1+/+ bone marrow-derived macrophages secrete more IL-10 but less proinflammatory cytokines than ABCA1−/− bone marrow-derived macrophages, similar to alternatively activated (M2) macrophages. We present evidence that ABCA1 activates PKA and that this elevated PKA activity contributes to M2-like inflammatory response from ABCA1+/+ bone marrow-derived macrophages. Furthermore, cholesterol lowering by statins, methyl-β-cyclodextrin, or filipin also activates PKA and, consequently, transforms macrophages toward M2-like phenotype. Conversely, cholesterol enrichment suppresses PKA activity and promotes M1-like inflammatory response. As the primary function of ABCA1 is cholesterol removal, our results suggest that ABCA1 activates PKA by regulating cholesterol. Indeed, forced cholesterol enrichment in ABCA1-expressing macrophages suppresses PKA activation and elicits M1-like response. Collectively, these findings reveal a novel protective process by ABCA1-activated PKA in macrophages. They also suggest cholesterol lowering in extra-hepatic tissues by statins as an anti-inflammation strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号