首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Though spliceosomal introns are a major structural component of most eukaryotic genes and intron density varies by more than three orders of magnitude among eukaryotes [1-3], the origins of introns are poorly understood, and only a few cases of unambiguous intron gain are known [4-8]. We utilized population genomic comparisons of three closely related fungi to identify crucial transitory phases of intron gain and loss. We found 74 intron positions showing intraspecific presence-absence polymorphisms (PAPs) for the entire intron. Population genetic analyses identified intron PAPs at different stages of fixation and showed that intron gain or loss was very recent. We found direct support for extensive intron transposition among unrelated genes. A substantial proportion of highly similar introns in the genome either were recently gained or showed a transient phase of intron PAP. We also identified an intron transfer among paralogous genes that created a new intron. Intron loss was due mainly to homologous recombination involving reverse-transcribed mRNA. The large number of intron positions in transient phases of either intron gain or loss shows that intron evolution is much faster than previously thought and provides an excellent model to study molecular mechanisms of intron gain.  相似文献   

3.
As part of the exploratory sequencing program Génolevures, visual scrutinisation and bioinformatic tools were used to detect spliceosomal introns in seven hemiascomycetous yeast species. A total of 153 putative novel introns were identified. Introns are rare in yeast nuclear genes (<5% have an intron), mainly located at the 5′ end of ORFs, and not highly conserved in sequence. They all share a clear non-random vocabulary: conserved splice sites and conserved nucleotide contexts around splice sites. Homologues of metazoan snRNAs and putative homologues of SR splicing factors were identified, confirming that the spliceosomal machinery is highly conserved in eukaryotes. Several introns’ features were tested as possible markers for phylogenetic analysis. We found that intron sizes vary widely within each genome, and according to the phylogenetic position of the yeast species. The evolutionary origin of spliceosomal introns was examined by analysing the degree of conservation of intron positions in homologous yeast genes. Most introns appeared to exist in the last common ancestor of present day yeast species, and then to have been differentially lost during speciation. However, in some cases, it is difficult to exclude a possible sliding event affecting a pre-existing intron or a gain of a novel intron. Taken together, our results indicate that the origin of spliceosomal introns is complex within a given genome, and that present day introns may have resulted from a dynamic flux between intron conservation, intron loss and intron gain during the evolution of hemiascomycetous yeasts.  相似文献   

4.
Several facets of spliceosomal intron in apicomplexans remain mysterious. First, intron numbers vary across species by 2 orders of magnitude, indicating massive intron loss and/or gain. Second, previous studies have shown very different evolutionary patterns over different timescales, with 100-fold higher rates of intron loss/gain between genera than within genera. Third, the timing and dynamics of nearly complete intron loss in Cryptosporidium species, as well as reasons for retention of the few remaining introns, remain unknown. We compared intron positions in 785 orthologous genes between 3 moderate to intron-rich apicomplexan species. We estimate that the Theileria-Plasmodium ancestor had 4.5 times as many introns as modern Plasmodium species and 38% more than modern Theileria species, and that subsequent intron losses have outnumbered intron gains by 5.8 to 1 in Theileria and by some 56 to 1 in Plasmodium. Several patterns suggest that these intron losses occurred by recombination with reverse-transcribed mRNAs. Intriguingly, this finding suggests significant retrotransposon activity in the lineages leading to both Theileria and Plasmodium, in contrast to the dearth of known retrotransposons and intron loss within modern species from both genera. We also compared genomes from Cryptosporidium parvum and C. hominis and found no evidence of ongoing intron loss, nor of intron gain. By contrast, Cryptosporidium introns are less evolutionary conserved with Toxoplasma than are introns from other apicomplexans; thus the few remaining introns are not simply indispensable ancestral introns.  相似文献   

5.
Intron loss and gain in Drosophila   总被引:1,自引:0,他引:1  
Although introns were first discovered almost 30 years ago, their evolutionary origin remains elusive. In this work, we used multispecies whole-genome alignments to map Drosophila melanogaster introns onto 10 other fully sequenced Drosophila genomes. We were able to find 1,944 sites where an intron was missing in one or more species. We show that for most (>80%) of these cases, there is no leftover intronic sequence or any missing exonic sequence, indicating exact intron loss or gain events. We used parsimony to classify these differences as 1,754 intron loss events and 213 gain events. We show that lost and gained introns are significantly shorter than average and flanked by longer than average exons. They also display quite distinct phase distributions and show greater than average similarity between the 5' splice site and its 3' partner splice site. Introns that have been lost in one or more species evolve faster than other introns, occur in slowly evolving genes, and are found adjacent to each other more often than would be expected for independent single losses. Our results support the cDNA recombination mechanism of intron loss, suggest that selective pressures affect site-specific loss rates, and show conclusively that intron gain has occurred within the Drosophila lineage, solidifying the "introns-middle" hypothesis and providing some hints about the gain mechanism.  相似文献   

6.
We have investigated intron evolution in the compact genomes of 2 closely related species of pufferfishes, Fugu rubripes and Tetraodon nigroviridis, that diverged about 32 million years ago (MYA). Analysis of 148,028 aligned intron positions in 13,547 gene pairs using human as an outgroup identified 57 and 24 intron losses in Tetraodon and fugu lineages, respectively, and no gain in either lineage. For comparison, we analyzed 144,545 intron positions in 12,866 orthologous pairs of genes in human and mouse that diverged about 61 MYA using dog as an outgroup and identified 51 intron losses in mouse and 3 losses in human and no gain. The rate of intron loss in Tetraodon is higher than that in fugu, mouse, and human but lower than the previous estimates for other eukaryotes. The introns lost in pufferfishes and mammals are significantly shorter than the mean size of introns in the genome. One intron deleted in fugu and another in Tetraodon have left behind 6 and 3 nucleotides, respectively, suggesting that they were lost due to genomic deletions. Such losses of introns are likely to be the result of a higher rate of DNA deletions experienced by the genomes of pufferfishes compared with mammals. The shorter generation time of Tetraodon compared with fugu, and the rich diversity and higher activity of transposable elements in pufferfishes compared with mammals, may be responsible for the higher rate of intron loss in Tetraodon. Our findings indicate that overall very little intron turnover has occurred in pufferfishes and mammals during recent evolution and that intron gain is an extremely rare event in vertebrate evolution.  相似文献   

7.
Spliceosomal introns are key components of the eukaryotic gene structure. Although they contributed to the emergence of eukaryotes, their origin remains elusive. In fungi, they might originate from the multiplication of invasive introns named Introner-Like Elements (ILEs). However, so far ILEs have been observed in six fungal species only, including Fulvia fulva and Dothistroma septosporum (Dothideomycetes), arguing against ILE insertion as a general mechanism for intron gain. Here, we identified novel ILEs in eight additional fungal species that are phylogenetically related to F. fulva and D. septosporum using PCR amplification with primers derived from previously identified ILEs. The ILE content appeared unique to each species, suggesting independent multiplication events. Interestingly, we identified four genes each containing two gained ILEs. By analysing intron positions in orthologues of these four genes in Ascomycota, we found that three ILEs had inserted within a 15 bp window that contains regular spliceosomal introns in other fungal species. These three positions are not the result of intron sliding because ILEs are newly gained introns. Furthermore, the alternative hypothesis of an inferred ancestral gain followed by independent losses contradicts the observed degeneration of ILEs. These observations clearly indicate three parallel intron gains in four genes that were randomly identified. Our findings suggest that parallel intron gain is a phenomenon that has been highly underestimated in ILE-containing fungi, and likely in the whole fungal kingdom.  相似文献   

8.
In this study, all available cytochrome b (Cyt b) genes from the GOBASE database were compiled and the evolutionary dynamics of the Cyt b gene introns was assessed. Cyt b gene introns were frequently present in the fungal kingdom and some lower plants, but generally absent or rare in Chromista, Protozoa, and Animalia. Fungal Cyt b introns were found at 35 positions in Cyt b genes and the number of introns varied at individual positions from a single representative to 32 different introns at position 131, showing a wide and patchy distribution. Many homologous introns were present at the same position in distantly related species but absent in closely related species, suggesting that introns of the Cyt b genes were frequently lost. On the other hand, highly similar intron sequences were observed in some distantly related species rather than in closely related species, suggesting that these introns were gained independently, likely through lateral transfers. The intron loss-and-gain events could be mediated by transpositions that might have occurred between nuclear and mitochondria. Southern hybridization analysis confirmed that some introns contained repetitive sequences and might be transposable elements. An intron gain in Botryotinia fuckeliana prevented the development of QoI fungicide resistance, suggesting that intron loss-and-gain events were not necessarily beneficial to their host organisms.  相似文献   

9.
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.  相似文献   

10.
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.  相似文献   

11.

Background

It is widely accepted that the last eukaryotic common ancestor and early eukaryotes were intron-rich and intron loss dominated subsequent evolution, thus the presence of only very few introns in some modern eukaryotes must be the consequence of massive loss. But it is striking that few eukaryotes were found to have completely lost introns. Despite extensive research, the causes of massive intron losses remain elusive. Actually the reverse question -- how the few introns can be retained under the evolutionary selection pressure of intron loss -- is equally significant but was rarely studied, except that it was conjectured that the essential functions of some introns prevent their loss. The situation that extremely few (eight) spliceosome-mediated cis-spliced introns present in the relatively simple genome of Giardia lamblia provides an excellent opportunity to explore this question.

Results

Our investigation found three types of distribution patterns of the few introns in the intron-containing genes: ancient intron in ancient gene, later-evolved intron in ancient gene, and later-evolved intron in later-evolved gene, which can reflect to some extent the dynamic evolution of introns in Giardia. Without finding any special features or functional importance of these introns responsible for their retention, we noticed and experimentally verified that some intron-containing genes form sense-antisense gene pairs with transcribable genes on their complementary strands, and that the introns just reside in the overlapping regions.

Conclusions

In Giardia’s evolution, despite constant evolutionary selection pressure of intron loss, intron gain can still occur in both ancient and later-evolved genes, but only a few introns are retained; at least the evolutionary retention of some of the introns might not be due to the functional constraint of the introns themselves but the causes outside of introns, such as the constraints imposed by other genomic functional elements overlapping with the introns. These findings can not only provide some clues to find new genomic functional elements -- in the areas overlapping with introns, but suggest that “functional constraint” of introns may not be necessarily directly associated with intron loss and gain, and that the real functions are probably still outside of our current knowledge.

Reviewers

This article was reviewed by Mikhail Gelfand, Michael Gray, and Igor Rogozin.
  相似文献   

12.
Identification of recently gained spliceosomal introns would provide crucial evidence in the continuing debate concerning the age and evolutionary significance of introns. A previously published genomic analysis reported to have identified 122 introns that had been gained since the divergence of the nematodes Caenorhabidits elegans and Caenorhabditis briggsae approximately 100 MYA. However, using newly available genomic sequence from additional Caenorhabditis species, we show that 74% (60/81) of the reported gains in C. elegans are present in a C. briggsae relative. This pattern indicates that these introns represent losses in C. briggsae, not gains in C. elegans. In addition, 61% (25/41) of the reported gains in C. briggsae are present in the more distant C. briggsae relative, in a pattern suggesting that additional reported gains in C. elegans and/or C. briggsae may in fact represent unrecognized losses. These results underscore the dominance of intron loss over intron gain in recent eukaryotic evolution, the pitfalls associated with parsimony in inferring intron gains, and the importance of genomic sequencing of clusters of closely related species for drawing accurate inferences about genome evolution.  相似文献   

13.
Numerous previous studies have elucidated 2 surprising patterns of spliceosomal intron evolution in diverse eukaryotes over the past roughly 100 Myr. First, rates of recent intron gain in a wide variety of eukaryotic lineages have been surprisingly low, far too low to explain modern intron densities. Second, intron losses have outnumbered intron gains over a variety of lineages. For several reasons, land plants might be expected to have comparatively high rates of intron gain and thus to represent a possible exception to this pattern. However, we report several studies that indicate low rates of intron gain and an excess of intron losses over intron gains in a variety of plant lineages. We estimate that intron losses have outnumbered intron gains in recent evolution in Arabidopsis thaliana (roughly 12.6 times more losses than gains), Oryza sativa (9.8 times), the green alga Chlamydomonas reinhardtii (5.1 times), and the Bigelowiella natans nucleomorph, an enslaved green algal nucleus (2.8 times). We estimate that during recent evolution, A. thaliana and O. sativa have experienced very low rates of intron gain of around one gain per gene per 2.6-8.0 billion years. In addition, we compared 8,258 pairs of putatively orthologous A. thaliana-O. sativa genes. We found that 5.3% of introns in conserved coding regions are species-specific. Observed species-specific A. thaliana and O. sativa introns tend to be exact and to lie adjacent to each other along the gene, in a pattern suggesting mRNA-mediated intron loss. Our results underscore that low intron gain rates and intron number reduction are common features of recent eukaryotic evolution. This pattern implies that rates of intron creation were higher during earlier periods of evolution and further focuses attention on the causes of initial intron proliferation.  相似文献   

14.
Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic sequences indicates that intron positions are conserved, and suggests that an ancestral catalase gene common to monocots and dicots contained seven introns. Arabidopsis CAT2 has seven introns; both CAT1 and CAT3 have six introns in positions conserved with CAT2, but each has lost a different intron. We suggest the following sequence of events during the evolution of the Arabidopsis catalase gene family. An initial duplication of an ancestral catalase gene gave rise to CAT3 and CAT1. CAT1 then served as the template for a second duplication, yielding CAT2. Intron losses from CAT1 and CAT3 followed these duplications. One subclade of monocot catalases has lost all but the 5''-most and 3''-most introns, which is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a fully spliced mRNA. Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites.  相似文献   

15.
16.
17.
18.
The number of introns varies considerably among different organisms. This can be explained by the differences in the rates of intron gain and loss. Two factors that are likely to influence these rates are selection for or against introns and the mutation rate that generates the novel intron or the intronless copy. Although it has been speculated that stronger selection for a compact genome might result in a higher rate of intron loss and a lower rate of intron gain, clear evidence is lacking, and the role of selection in determining these rates has not been established. Here, we studied the gain and loss of introns in the two closely related species Arabidopsis thaliana and A. lyrata as it was recently shown that A. thaliana has been undergoing a faster genome reduction driven by selection. We found that A. thaliana has lost six times more introns than A. lyrata since the divergence of the two species but gained very few introns. We suggest that stronger selection for genome reduction probably resulted in the much higher intron loss rate in A. thaliana, although further analysis is required as we could not find evidence that the loss rate increased in A. thaliana as opposed to having decreased in A. lyrata compared with the rate in the common ancestor. We also examined the pattern of the intron gains and losses to better understand the mechanisms by which they occur. Microsimilarity was detected between the splice sites of several gained and lost introns, suggesting that nonhomologous end joining repair of double-strand breaks might be a common pathway not only for intron gain but also for intron loss.  相似文献   

19.
Cryptophytes are unicellular eukaryotic algae that acquired photosynthesis secondarily through the uptake and retention of a red-algal endosymbiont. The plastid genome of the cryptophyte Rhodomonas salina CCMP1319 was recently sequenced and found to contain a genetic element similar to a group II intron. Here, we explore the distribution, structure and function of group II introns in the plastid genomes of distantly and closely related cryptophytes. The predicted secondary structures of six introns contained in three different genes were examined and found to be generally similar to group II introns but unusually large in size (including the largest known noncoding intron). Phylogenetic analysis suggests that the cryptophyte group II introns were acquired via lateral gene transfer (LGT) from a euglenid-like species. Unexpectedly, the six introns occupy five distinct genomic locations, suggesting multiple LGT events or recent transposition (or both). Combined with structural considerations, RT–PCR experiments suggest that the transferred introns are degenerate ‘twintrons’ (i.e. nested group II/group III introns) in which the internal intron has lost its splicing capability, resulting in an amalgamation with the outer intron.  相似文献   

20.
B Dujon 《Gene》1989,82(1):91-114
Group I introns form a structural and functional group of introns with widespread but irregular distribution among very diverse organisms and genetic systems. Evidence is now accumulating that several group I introns are mobile genetic elements with properties similar to those originally described for the omega system of Saccharomyces cerevisiae: mobile group I introns encode sequence-specific double-strand (ds) endoDNases, which recognize and cleave intronless genes to insert a copy of the intron by a ds-break repair mechanism. This mechanism results in: the efficient propagation of group I introns into their cognate sites; their maintenance at the site against spontaneous loss; and, perhaps, their transposition to different sites. The spontaneous loss of group I introns occurs with low frequency by an RNA-mediated mechanism. This mechanism eliminates introns defective for mobility and/or for RNA splicing. Mechanisms of intron acquisition and intron loss must create an equilibrium, which explains the irregular distribution of group I introns in various genetic systems. Furthermore, the observed distribution also predicts that horizontal transfer of intron sequences must occur between unrelated species, using vectors yet to be discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号