首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Introduction

Primary graft dysfunction (PGD) is a significant contributor to early morbidity and mortality after lung transplantation. Increased vascular permeability in the allograft has been identified as a possible mechanism leading to PGD. Angiopoietin-2 serves as a partial antagonist to the Tie-2 receptor and induces increased endothelial permeability. We hypothesized that elevated Ang2 levels would be associated with development of PGD.

Methods

We performed a case-control study, nested within the multi-center Lung Transplant Outcomes Group cohort. Plasma angiopoietin-2 levels were measured pre-transplant and 6 and 24 hours post-reperfusion. The primary outcome was development of grade 3 PGD in the first 72 hours. The association of angiopoietin-2 plasma levels and PGD was evaluated using generalized estimating equations (GEE).

Results

There were 40 PGD subjects and 79 non-PGD subjects included for analysis. Twenty-four PGD subjects (40%) and 47 non-PGD subjects (59%) received a transplant for the diagnosis of idiopathic pulmonary fibrosis (IPF). Among all subjects, GEE modeling identified a significant change in angiopoietin-2 level over time in cases compared to controls (p = 0.03). The association between change in angiopoietin-2 level over the perioperative time period was most significant in patients with a pre-operative diagnosis of IPF (p = 0.02); there was no statistically significant correlation between angiopoietin-2 plasma levels and the development of PGD in the subset of patients transplanted for chronic obstructive pulmonary disease (COPD) (p = 0.9).

Conclusions

Angiopoietin-2 levels were significantly associated with the development of PGD after lung transplantation. Further studies examining the regulation of endothelial cell permeability in the pathogenesis of PGD are indicated.  相似文献   

2.

Background

Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology.

Methodology/Principal Findings

Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling.

Conclusions/Significance

Taken together, our data show that 16K hPRL impairs functional tumor neovascularization by inhibiting vessel maturation and for the first time that an endogenous antiangiogenic agent disturbs Notch signaling. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy.  相似文献   

3.

Background

Chronic heart failure is an important cause for morbidity and mortality in adults with congenital heart disease (ACHD). While NT-proBNP is an established biomarker for heart failure of non-congenital origin, its application in ACHD has limitations. The angiogenic factors Angiopoietin-1 and -2 (Ang-1, Ang-2), vascular endothelial growth factor (VEGF), and soluble receptor tyrosine kinase of the Tie family (sTie2) correlate with disease severity in heart failure of non-congenital origin. Their role in ACHD has not been studied.

Methods

In 91 patients Ang-2 and NT-proBNP were measured and related to New York Heart Association class, systemic ventricular function and parameters of cardiopulmonary exercise testing. Ang-1, VEGF, and sTie2 were also measured.

Results

Ang-2 correlates with NYHA class and ventricular dysfunction comparable to NT-proBNP. Further, Ang-2 showed a good correlation with parameters of cardiopulmonary exercise testing. Both, Ang-2 and NT-proBNP identified patients with severely limited cardiopulmonary exercise capacity. Additionally, Ang-2 is elevated in patients with a single ventricle physiology in contrast to NT-proBNP. VEGF, Ang-1, and sTie2 were not correlated with any clinical parameter.

Conclusion

The performance of Ang-2 as a biomarker for heart failure in ACHD is comparable to NT-proBNP. Its significant elevation in patients with single ventricle physiology indicates potential in this patient group and warrants further studies.  相似文献   

4.

Background

The role and mechanism of action of MIF in bronchopulmonary dysplasia (BPD) are not known. We hypothesized that increased MIF signaling would ameliorate the pulmonary phenotype of BPD in the mouse lung.

Methods

We studied newborn wild type (WT), MIF knockout (MIFKO), and lung MIF transgenic (MIFTG) mice in room air and a BPD model, and examined the effects of administering a small molecule MIF agonist and antagonist. Lung morphometry was performed and mRNA and protein expression of vascular mediators were analyzed.

Results

The pulmonary phenotype of MIFKO and MIFTG mice lungs in room air (RA) and BPD model were comparable to the WT-BPD mice at postnatal (PN) day 14. Vascular endothelial growth factor (VEGF)-A, -R1 and Angiopoietin (Ang)1 mRNA were decreased, and Ang2 increased in the WT-BPD, MIFKO-RA, MIFKO-BPD, MIFTG-RA and MIFTG-BPD mice lungs, compared to appropriate controls. The protein expression of Ang1 in the MIFKO-RA was similar to WT-RA, but decreased in MIFTG-RA, and decreased in all the BPD groups. Ang2 was increased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. Tie2 was increased in WT-BPD compared to WT-RA, but decreased in MIFKO- and MIFTG- RA and BPD groups. VEGFR1 was uniformly decreased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. VEGF-A had a similar expression across all RA and BPD groups. There was partial recovery of the pulmonary phenotype in the WT-BPD model treated with the MIF agonist, and in the MIFTG mice treated with the MIF antagonist.

Conclusions

These data point to the careful regulatory balance exerted by MIF in the developing lung and response to hyperoxia and support the potential therapeutic value of small molecule MIF modulation in BPD.  相似文献   

5.

Background

The pathophysiological mechanisms of renal function progression in chronic kidney disease (CKD) have still not been completely explored. In addition to well-known traditional risk factors, non-traditional risk factors, such as endothelial dysfunction, have gradually attracted physicians'' attention. Angiopoietin-2 (Ang-2) impairs endothelial function through preventing angiopoietin-1 from binding to Tie2 receptor. Whether Ang-2 is associated with renal function progression in CKD is unknown.

Methods

This study enrolled 621 patients with stages 3–5 CKD to assess the association of circulating Ang-2 with commencing dialysis, doubling creatinine and rapid decline in renal function (the slope of estimated glomerular filtration rate (eGFR) greater than 5 ml/min per 1.73 m2/y) over follow-up of more than 3 years.

Results

Of all patients, 224 patients (36.1%) progressed to commencing dialysis and 165 (26.6%) reached doubling creatinine. 85 subjects (13.9%) had rapid decline in renal function. Ang-2 quartile was divided at 1494.1, 1948.8, and 2593.1 pg/ml. The adjusted HR of composite outcomes, either commencing dialysis or doubling creatinine was 1.53 (95% CI: 1.06–2.23) for subjects of quartile 4 compared with those of quartile 1. The adjusted OR for rapid decline in renal function was 2.96 (95% CI: 1.13–7.76) for subjects of quartile 4 compared with those of quartile 1. The linear mixed-effects model shows a more rapid decrease in eGFR over time in patients with quartile 3 or more of Ang-2 than those with the lowest quartile of Ang-2.

Conclusions

Ang-2 is an independent predictor of adverse renal outcome in CKD. Further study is needed to identify the pathogenic role of Ang-2 in CKD progression.  相似文献   

6.

Objective

Blood brain barrier (BBB) breakdown and increased endothelial permeability is a hallmark of neuro-vascular inflammation. Angiopoietin-1 (Ang-1), a Tie-2 receptor agonist ligand, is known to modulate barrier function of endothelial cells; however the molecular mechanisms related to Ang-1 mediated repair of Tight Junctions (TJs) in brain endothelium still remain elusive. In this study, we investigated a novel role of non-receptor protein tyrosine phosphatase N-2 (PTPN-2) in Ang-1 mediated stabilization of tight junction proteins.

Method and Result

To study the barrier protective mechanism of Ang-1, we challenged human brain microvascular endothelial cells in-vitro, with a potent inflammatory mediator thrombin. By using confocal microscopy and transwell permeability assay, we show that pretreatment of brain endothelial cells with Ang-1 diminish thrombin mediated disruption of TJs and increase in endothelial permeability. We also found that Ang-1 inhibits thrombin induced tyrosine phosphorylation of Occludin and promote Occludin interaction with Zona Occludens-1 (ZO-1) to stabilize TJs. Interestingly, our study revealed that depletion of PTPN-2 by siRNAs abolishes Ang-1 ability to promote tyrosine dephosphorylation of Occludin, resulting Occludin disassociation from ZO-1 and endothelial hyperpermeability.

Summary

Collectively, our findings suggest that in brain endothelial cells blocking PTPN-2 mediated tyrosine phosphorylation of Occludin is a novel mechanism to maintain BBB function, and may offer a key therapeutic strategy for neuro-inflammatory disorders associated with BBB disruption.  相似文献   

7.

Background

The family of vascular endothelial growth factors (VEGF) contains key regulators of blood and lymph vessel development, including VEGF-A, -B, -C, -D, and placental growth factor. The role of VEGF-B during physiological or pathological angiogenesis has not yet been conclusively delineated. Herein, we investigate the function of VEGF-B by the generation of mouse models of cancer with transgenic expression of VEGF-B or homozygous deletion of Vegfb.

Methodology/Principal Findings

Ectopic expression of VEGF-B in the insulin-producing β-cells of the pancreas did not alter the abundance or architecture of the islets of Langerhans. The vasculature from transgenic mice exhibited a dilated morphology, but was of similar density as that of wildtype mice. Unexpectedly, we found that transgenic expression of VEGF-B in the RIP1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis retarded tumor growth. Conversely, RIP1-Tag2 mice deficient for Vegfb presented with larger tumors. No differences in vascular density, perfusion or immune cell infiltration upon altered Vegfb gene dosage were noted. However, VEGF-B acted to increase blood vessel diameter both in normal pancreatic islets and in RIP1-Tag2 tumors.

Conclusions/Significance

Taken together, our results illustrate the differences in biological function between members of the VEGF family, and highlight the necessity of in-depth functional studies of VEGF-B to fully understand the effects of VEGFR-1 inhibitors currently used in the clinic.  相似文献   

8.

Introduction

The diagnostic potential of optical coherence tomography (OCT) in neurological diseases is intensively discussed. Besides the sectional view of the retina, modern OCT scanners produce a simultaneous top-view confocal scanning laser ophthalmoscopy (cSLO) image including the option to evaluate retinal vessels. A correct discrimination between arteries and veins (labeling) is vital for detecting vascular differences between healthy subjects and patients. Up to now, criteria for labeling (cSLO) images generated by OCT scanners do not exist.

Objective

This study reviewed labeling criteria originally developed for color fundus photography (CFP) images.

Methods

The criteria were modified to reflect the cSLO technique, followed by development of a protocol for labeling blood vessels. These criteria were based on main aspects such as central light reflex, brightness, and vessel thickness, as well as on some additional criteria such as vascular crossing patterns and the context of the vessel tree.

Results and Conclusion

They demonstrated excellent inter-rater agreement and validity, which seems to indicate that labeling of images might no longer require more than one rater. This algorithm extends the diagnostic possibilities offered by OCT investigations.  相似文献   

9.

Background

Malignant pleural effusion (MPE) is a common complication of lung cancer. One widely used treatment for MPE is Endostar, a recombined humanized endostatin based treatment. However, the mechanism of this treatment is still unclear. The aim of this study was to investigate the effects of Endostar in mice with MPE.

Methods and Materials

Lewis lung carcinoma (LLC) cell line expressing enhanced green fluorescent protein (EGFP) was injected into pleural cavity to establish MPE mice model. Mice were randomly divided into four groups. High dose of Endostar (30 mg/kg), low dose of Endostar (8 mg/kg), normal saline, or Bevacizumab (5 mg/kg) was respectively injected into pleural cavity three times with 3-day interval in each group. Transverse computed tomography (CT) was performed to observe pleural fluid formation 14 days after LLC cells injection. Mice were anesthetized and sacrificed 3 days after final administration. The volume of pleural effusion n was measured using 1 ml syringe. Micro blood vessel density (MVD), Lymphatic micro vessel density (LMVD), the expression level of vascular endothelial growth factor A (VEGF-A) and VEGF-C were observed by immunohistochemistry (IHC) staining.

Results

The volume of pleural effusion as well as the number of pleural tumor foci, MVD and the expression of VEGF-A were significantly reduced in high dose of Endostar treat group. More importantly, LMVD and the expression of VEGF-C were markedly lower in treat group than those in the other three control groups.

Conclusion

Our work demonstrated that Endostar played an efficient anti-cancer role in MPE through its suppressive effect on angiogenesis and lymphangiogenesis, which provided a certain theoretical basis for the effectiveness of Endostar on the MPE treatment.  相似文献   

10.

Objective

The influence of hematological indices such as complete blood count on microcirculation is poorly understood. Retinal microvasculature can be directly visualized and vessel calibers are associated with a range of ocular and systemic diseases. We examined the association of complete blood count with retinal vessel calibers.

Methods

Cross-sectional population-based Blue Mountains Eye Study, n = 3009, aged 49+ years. Complete blood count was measured from fasting blood samples taken at baseline examination, 1992–4. Retinal arteriolar and venular calibers were measured from digitized retinal photographs using a validated semi-automated computer program.

Results

All analyses adjusted for age, sex, systolic blood pressure, diabetes, smoking and fellow vessel caliber. Higher hematocrit, white cell count and platelet count were associated with narrower arteriolar caliber (p = 0.02, 0.03 and 0.001 respectively), while higher hemoglobin, hematocrit, red cell count, white cell count and platelet count were associated with wider venular caliber (p<0.0001 for all). Each quintile increase in hematocrit, white cell count and platelet count was associated with approximately 0.5 µm narrower arteriolar caliber; whereas each quintile increase in all of the complete blood count components was associated with approximately 1–2 µm wider venular caliber.

Conclusions

These associations show that elevated levels of hematological indices can have adverse effects on the microcirculation.  相似文献   

11.
Peng F  Xu Z  Wang J  Chen Y  Li Q  Zuo Y  Chen J  Hu X  Zhou Q  Wang Y  Ma H  Bao Y  Chen M 《PloS one》2012,7(4):e34646

Background

Hypoxic tumor cells can reduce the efficacy of radiation. Antiangiogenic therapy may transiently “normalize” the tumor vasculature to make it more efficient for oxygen delivery. The aim of this study is to investigate whether the recombinant human endostatin (endostar) can create a “vascular normalization window” to alleviate hypoxia and enhance the inhibitory effects of radiation therapy in human nasopharyngeal carcinoma (NPC) in mice.

Methodology/Principal Findings

Transient changes in morphology of tumor vasculature and hypoxic tumor cell fraction in response to endostar were detected in mice bearing CNE-2 and 5–8F human NPC xenografts. Various treatment schedules were tested to assess the influence of endostar on the effect of radiation therapy. Several important factors relevant to the angiogenesis were identified through immunohistochemical staining. During endostar treatment, tumor vascularity decreased, while the basement membrane and pericyte coverage associated with endothelial cells increased, which supported the idea of vessel normalization. Hypoxic tumor cell fraction also decreased after the treatment. The transient modulation of tumor physiology caused by endostar improved the effect of radiation treatment compared with other treatment schedules. The expressions of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-14 decreased, while the level of pigment epithelium-derived factor (PEDF) increased.

Conclusions

Endostar normalized tumor vasculature, which alleviated hypoxia and significantly sensitized the function of radiation in anti-tumor in human NPC. The results provide an important experimental basis for combining endostar with radiation therapy in human NPC.  相似文献   

12.
Choi YK  Nash K  Byrne BJ  Muzyczka N  Song S 《PloS one》2010,5(12):e15073

Background

DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme and plays an important role in determining the molecular fate of the rAAV genome. However, the effect this cellular enzyme on rAAV DNA replication remains elusive.

Methodology/Principal Findings

In the present study, we characterized the roles of DNA-PK on recombinant adeno-associated virus DNA replication. Inhibition of DNA-PK by a DNA-PK inhibitor or siRNA targeting DNA-PKcs significantly decreased replication of AAV in MO59K and 293 cells. Southern blot analysis showed that replicated rAAV DNA formed head-to-head or tail-to-tail junctions. The head-to-tail junction was low or undetectable suggesting AAV-ITR self-priming is the major mechanism for rAAV DNA replication. In an in vitro replication assay, anti-Ku80 antibody strongly inhibited rAAV replication, while anti-Ku70 antibody moderately decreased rAAV replication. Similarly, when Ku heterodimer (Ku70/80) was depleted, less replicated rAAV DNA were detected. Finally, we showed that AAV-ITRs directly interacted with Ku proteins.

Conclusion/Significance

Collectively, our results showed that that DNA-PK enhances rAAV replication through the interaction of Ku proteins and AAV-ITRs.  相似文献   

13.

Background

Loss of integrity of the epithelial and endothelial barriers is thought to be a prominent feature of ventilator-induced lung injury (VILI). Based on its function in vascular integrity, we hypothesize that the angiopoietin (Ang)-Tie2 system plays a role in the development of VILI. The present study was designed to examine the effects of mechanical ventilation on the Ang-Tie2 system in lung tissue. Moreover, we evaluated whether treatment with Ang-1, a Tie2 receptor agonist, protects against inflammation, vascular leakage and impaired gas exchange induced by mechanical ventilation.

Methods

Mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with either an inspiratory pressure of 10 cmH2O (‘low’ tidal volume ∼7.5 ml/kg; LVT) or 18 cmH2O (‘high’ tidal volume ∼15 ml/kg; HVT). At initiation of HVT-ventilation, recombinant human Ang-1 was intravenously administered (1 or 4 µg per animal). Non-ventilated mice served as controls.

Results

HVT-ventilation influenced the Ang-Tie2 system in lungs of healthy mice since Ang-1, Ang-2 and Tie2 mRNA were decreased. Treatment with Ang-1 increased Akt-phosphorylation indicating Tie2 signaling. Ang-1 treatment reduced infiltration of granulocytes and expression of keratinocyte-derived chemokine (KC), macrophage inflammatory protein (MIP)-2, monocyte chemotactic protein (MCP)-1 and interleukin (IL)-1β caused by HVT-ventilation. Importantly, Ang-1 treatment did not prevent vascular leakage and impaired gas exchange in HVT-ventilated mice despite inhibition of inflammation, vascular endothelial growth factor (VEGF) and Ang-2 expression.

Conclusions

Ang-1 treatment downregulates pulmonary inflammation, VEGF and Ang-2 expression but does not protect against vascular leakage and impaired gas exchange induced by HVT-ventilation.  相似文献   

14.

Background

Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics.

Methods and Findings

To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF.

Conclusions

These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.  相似文献   

15.

Background

Ectopic angiogenesis within the intima and media is considered to be a hallmark of advanced vulnerable atherosclerotic lesions. Some studies have shown that specific matrix metalloproteinases (MMPs) might play different roles in angiogenesis. Therefore, we investigated the predominant effects of specific MMPs in intraplaque angiogenesis and plaque instability in a rabbit model of atherosclerosis.

Methods and Results

New Zealand rabbits underwent balloon injury of the abdominal artery and ingestion of a high-cholesterol (1%) diet to establish an atherosclerotic animal model. At weeks 4, 6, 8, 10, and 12 after balloon injury, five rabbits were euthanized and the abdominal aorta was harvested. Blood lipid analysis, intravascular ultrasound imaging, pathologic and immunohistochemical expression studies, and western blotting were performed. From weeks 4 to 12, the expression of MMP-1, -2, -3, and -9 and vascular endothelial growth factor A (VEGF-A) increased with atherosclerotic plaque development in the abdominal aorta, while the expression of MMP-14 substantially decreased. The vulnerability index (VI) gradually increased over time. Intraplaque neovessels appeared at week 8. The microvessel density (MVD) was greater at week 12 than at week 8. The VI, MVD, and VEGF-A level were positively correlated with the MMP-1, -2,-3, and -9 levels within plaques. Negative correlations were noted between the MMP-14 level and the VI, MVD, and VEGF-A level.

Conclusion

Upregulation of MMP-1, -2, -3, and -9 and downregulation of MMP-14 may contribute to intraplaque angiogenesis and plaque instability at the advanced stage of atherosclerosis in rabbits.  相似文献   

16.

Introduction

The angiogenic proteins angiopoietin (Ang)-1, Ang-2 and vascular endothelial growth factor (VEGF) are regulators of endothelial inflammation and integrity. Since platelets store large amounts of Ang-1 and VEGF, measurement of circulation levels of these proteins is sensitive to platelet number, in vivo platelet activation and inadvertent platelet activation during blood processing. We studied plasma Ang-1, Ang-2 and VEGF levels in malaria patients, taking the necessary precautions to avoid ex vivo platelet activation, and related plasma levels to platelet count and the soluble platelet activation markers P-selectin and CXCL7.

Methods

Plasma levels of Ang-1, Ang-2, VEGF, P-selectin and CXCL7 were measured in CTAD plasma, minimizing ex vivo platelet activation, in 27 patients with febrile Plasmodium falciparum malaria at presentation and day 2 and 5 of treatment and in 25 healthy controls.

Results

Levels of Ang-1, Ang-2 and VEGF were higher at day 0 in malaria patients compared to healthy controls. Ang-2 levels, which is a marker of endothelial activation, decreased after start of antimalarial treatment. In contrast, Ang-1 and VEGF plasma levels increased and this corresponded with the increase in platelet number. Soluble P-selectin and CXCL7 levels followed the same trend as Ang-1 and VEGF levels. Plasma levels of these four proteins correlated strongly in malaria patients, but only moderately in controls.

Conclusion

In contrast to previous studies, we found elevated plasma levels of Ang-1 and VEGF in patients with malaria resulting from in vivo platelet activation. Ang-1 release from platelets may be important to dampen the disturbing effects of Ang-2 on the endothelium. Evaluation of plasma levels of these angiogenic proteins requires close adherence to a stringent protocol to minimize ex vivo platelet activation.  相似文献   

17.
Angiogenesis is a crucial component of rat brain adaptation to prolonged hypoxia, but it is not known whether this structural change is permanent or reversed on return to normoxia. Also, the intrinsic mechanisms controlling brain microvascular plasticity in response to oxygen availability remains unclear. Our results indicate that capillary density in the rat cerebral cortex increased by 60% after 3 wk of hypoxia and that it progressively decreased to prehypoxic values after 3 wk of normoxic recovery (deadaptation). Angiopoietin-2 (Ang2) expression in the capillary endothelium was induced between 6 h and 14 days of hypoxia but fell to control levels at 21 days of hypoxia. During deadaptation, Ang2 levels were elevated at 1-14 days but decreased to baseline at 21 days. In contrast, the constitutive expression of Ang1 and Tie2 was not affected during hypoxia or deadaptation. TUNEL-positive endothelial cells and caspase-3 activation were observed at 7 and 14 days of deadaptation. These data suggest that Ang2 might modulate both angiogenesis and vascular regression in the rat brain and that capillary regression occurring during deadaptation involves activation of apoptosis.  相似文献   

18.

Aims/hypothesis

Islet vascularization, by controlling beta-cell mass expansion in response to increased insulin demand, is implicated in the progression to glucose intolerance and type 2 diabetes. We investigated how hyperglycaemia impairs expansion and differentiation of the growing pancreas. We have grafted xenogenic (avian) embryonic pancreas in severe combined immuno-deficient (SCID) mouse and analyzed endocrine and endothelial development in hyperglycaemic compared to normoglycaemic conditions.

Methods

14 dpi chicken pancreases were grafted under the kidney capsule of normoglycaemic or hyperglycaemic, streptozotocin-induced, SCID mice and analyzed two weeks later. Vascularization was analyzed both quantitatively and qualitatively using either in situ hybridization with both mouse- and chick-specific RNA probes for VEGFR2 or immunohistochemistry with an antibody to nestin, a marker of endothelial cells that is specific for murine cells. To inhibit angiopoietin 2 (Ang2), SCID mice were treated with 4 mg/kg IP L1–10 twice/week.

Results

In normoglycaemic condition, chicken-derived endocrine and exocrine cells developed well and intragraft vessels were lined with mouse endothelial cells. When pancreases were grafted in hyperglycaemic mice, growth and differentiation of the graft were altered and we observed endothelial discontinuities, large blood-filled spaces. Vessel density was decreased. These major vascular anomalies were associated with strong over-expression of chick-Ang2. To explore the possibility that Ang2 over-expression could be a key step in vascular disorganization induced by hyperglycaemia, we treated mice with L1–10, an Ang-2 specific inhibitor. Inhibition of Ang2 improved vascularization and beta-cell density.

Conclusions

This work highlighted an important role of Ang2 in pancreatic vascular defects induced by hyperglycaemia.  相似文献   

19.

Background

Microglial cells are the predominant immune cells in malignant brain tumors, but tumors may release some factors to reduce their defensive functions. Restoration of the anti-cancer function of microglia has been proposed as a treatment modality for glioblastoma. We examined the effect of intra-cranially administered recombinant adeno-associated virus encoding interleukin-12 (rAAV2/IL12) on transfection efficiency, local immune activity and survival in a rat model of glioblastoma multiforme.

Methods

F344 rats were injected with rAAV2/IL12 and implanted with syngeneic RG2 cells (glioblastoma cell line). Intracerebral interleukin-12 and interferon-γ concentrations were determined by ELISA. Activation of microglia was determined by expressions of ED1 and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) which were evaluated by Western blotting and immunohistochemistry. The proliferation of cancer cells was evaluated with Ki67 immunohistochemistry and apoptosis of cancer cells with TUNEL.

Results

The brains treated with rAAV2/IL-12 maintained high expression of interleukin-12 and interferon-γ for at least two months. In syngeneic tumor model, brains treated with rAAV2/IL12 exhibited more infiltration of activated microglia cells as examined by ED1 and TRAIL stains in the tumor. In addition, the volume of tumor was markedly smaller in AAV2/IL12-treated group and the survival time was significantly longer in this group too.

Conclusion

The intra-cerebrally administered rAAV2/IL-12 efficiently induces long lasting expression of IL-12, the greater infiltration of activated microglia cells in the tumor associated improved immune reactions, resulting in the inhibited growth of implanted glioblastoma and the increased survival time of these rats.  相似文献   

20.

Object

To test the hypothesis that angiotensin II (Ang II) could enhance noradrenaline (NA) release from sympathetic nerve endings of the aorta thus contributing to the up-regulation of matrix metalloproteinase 2 (MMP-2) during the formation of aortic dissection (AD).

Methods

Ang II, NA, MMP-2, MMP-9 of the aorta sample obtained during operation from aortic dissection patients were detected by High Performance Liquid Chromatography and ELISA and compared with controls. Isotope labelling method was used to test the impact of exogenous Ang II and noradrenaline on the NA release and MMP-2, MMP-9 expression on Sprague Dawley (SD) rat aorta rings in vitro. Two kidneys, one clip, models were replicated for further check of that impact in SD rats in vivo.

Results

The concentration of Ang II, MMP-2, 9 was increased and NA concentration was decreased in aorta samples from AD patients. Exogenous Ang II enhanced while exogenous NA restrained NA release from aortic sympathetic endings. The Ang II stimulated NA release and the following MMP-2 up-regulation could be weakened by Losartan and chemical sympathectomy. Beta blocker did not influence NA release but down-regulated MMP-2. Long term in vivo experiments confirmed that Ang II could enhance NA release and up-regulate MMP-2.

Conclusions

AD is initiated by MMP-2 overexpression as a result of increased NA release from sympathetic nervous endings in response to Ang II. This indicates an interaction of RAS and SAS during the formation of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号