首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methyl halides are volatile one-carbon compounds responsible for substantial depletion of stratospheric ozone. Among them, chloromethane (CH3Cl) is the most abundant halogenated hydrocarbon in the atmosphere. Global budgets of methyl halides in the environment are still poorly understood due to uncertainties in their natural sources, mainly from vegetation, and their sinks, which include chloromethane-degrading bacteria. A bacterial bioreporter for the detection of methyl halides was developed on the basis of detailed knowledge of the physiology and genetics of Methylobacterium extorquens CM4, an aerobic alphaproteobacterium which utilizes chloromethane as the sole source of carbon and energy. A plasmid construct with the promoter region of the chloromethane dehalogenase gene cmuA fused to a promotorless yellow fluorescent protein gene cassette resulted in specific methyl halide-dependent fluorescence when introduced into M. extorquens CM4. The bacterial whole-cell bioreporter allowed detection of methyl halides at femtomolar levels and quantification at concentrations above 10 pM (approximately 240 ppt). As shown for the model chloromethane-producing plant Arabidopsis thaliana in particular, the bioreporter may provide an attractive alternative to analytical chemical methods to screen for natural sources of methyl halide emissions.  相似文献   

2.
Methylobacterium sp. strain CM4 metabolized chloromethane quantitatively with a molar yield of 2.8 g of whole-cell protein/mol of C. This value was similar to that observed after growth with methanol (2.9 g of protein/mol of C) and about three times larger than the yield with formate (0.94 g of protein/mol of C). Chloromethane dehalogenation activity was inducible. MiniTn5 transposon insertion mutants with altered growth characteristics with chloromethane and other C1 compounds were isolated and characterized. Nine of these were unable to grow with chloromethane but were able to grow with methanol, methylamine, or formate. Seventy-three transposon mutants that were defective in the utilization of either methanol, methylamine, methanol plus methylamine, or formate could still grow with chloromethane. Based on the protein yield data and the properties of the transposon mutants, we propose a pathway for chloromethane metabolism that depends on methyltransferase and dehydrogenase activities.  相似文献   

3.
The cmuA and cmuB genes are required for growth of Methylobacterium chloromethanicum strain CM4 with chloromethane as the sole carbon source. While CmuB was previously shown to possess methylcobalamin:tetrahydrofolate methyltransferase activity, sequence analysis indicated that CmuA represented a novel and so far unique two-domain methyltransferase/corrinoid-binding protein involved in methyl transfer from chloromethane to a corrin moiety. CmuA was purified from wild-type M. chloromethanicum strain CM4 and characterized as a monomeric, cobalt-containing and zinc-containing enzyme of molecular mass 67 kDa with a bound vitamin B12 cofactor. In combination, CmuA and CmuB proteins catalyze the in vitro transfer of the methyl group of chloromethane to tetrahydrofolate, thus affording a direct link between chloromethane dehalogenation and core C1 metabolism of Methylobacterium. Chloromethane dehalogenase activity in vitro is limited by CmuB, as formation of methyltetrahydrofolate from chloromethane displays apparent Michaelis-Menten kinetics with respect to methylated CmuA, with an apparent Km of 0.27 microM and a Vmax of 0.45 U x mg(-1). This contrasts with sequence-related systems for methyl transfer from methanogens, which involve methyltransferase and corrinoid protein components in well-defined stoichiometric ratios.  相似文献   

4.
Methylotrophs grow on reduced single-carbon compounds like methylamine as the sole source of carbon and energy. In Methylobacterium extorquens AM1, the best-studied aerobic methylotroph, a periplasmic methylamine dehydrogenase that catalyzes the primary oxidation of methylamine to formaldehyde has been examined in great detail. However, recent metagenomic data from natural ecosystems are revealing the abundance and importance of lesser-known routes, such as the N-methylglutamate pathway, for methylamine oxidation. In this study, we used M. extorquens PA1, a strain that is closely related to M. extorquens AM1 but is lacking methylamine dehydrogenase, to dissect the genetics and physiology of the ecologically relevant N-methylglutamate pathway for methylamine oxidation. Phenotypic analyses of mutants with null mutations in genes encoding enzymes of the N-methylglutamate pathway suggested that γ-glutamylmethylamide synthetase is essential for growth on methylamine as a carbon source but not as a nitrogen source. Furthermore, analysis of M. extorquens PA1 mutants with defects in methylotrophy-specific dissimilatory and assimilatory modules suggested that methylamine use via the N-methylglutamate pathway requires the tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation pathway but not a complete tetrahydrofolate (H4F)-dependent formate assimilation pathway. Additionally, we present genetic evidence that formaldehyde-activating enzyme (FAE) homologs might be involved in methylotrophy. Null mutants of FAE and homologs revealed that FAE and FAE2 influence the growth rate and FAE3 influences the yield during the growth of M. extorquens PA1 on methylamine.  相似文献   

5.
Pseudomonas aeruginosa strain NB1 uses chloromethane (CM) as its sole source of carbon and energy under nitrate-reducing and aerobic conditions. The observed yield of NB1 was 0.20 (±0.06) (mean ± standard deviation) and 0.28 (±0.01) mg of total suspended solids (TSS) mg of CM−1 under anoxic and aerobic conditions, respectively. The stoichiometry of nitrate consumption was 0.75 (±0.10) electron equivalents (eeq) of NO3 per eeq of CM, which is consistent with the yield when it is expressed on an eeq basis. Nitrate was stoichiometrically converted to dinitrogen (0.51 ± 0.05 mol of N2 per mol of NO3). The stoichiometry of oxygen use with CM (0.85 ± 0.21 eeq of O2 per eeq of CM) was also consistent with the aerobic yield. Stoichiometric release of chloride and minimal accumulation of soluble metabolic products (measured as chemical oxygen demand) following CM consumption, under anoxic and aerobic conditions, indicated complete biodegradation of CM. Acetylene did not inhibit CM use under aerobic conditions, implying that a monooxygenase was not involved in initiating aerobic CM metabolism. Under anoxic conditions, the maximum specific CM utilization rate (k) for NB1 was 5.01 (±0.06) μmol of CM mg of TSS−1 day−1, the maximum specific growth rate (μmax) was 0.0506 day−1, and the Monod half-saturation coefficient (Ks) was 0.067 (±0.004) μM. Under aerobic conditions, the values for k, μmax, and Ks were 10.7 (±0.11) μmol of CM mg of TSS−1 day−1, 0.145 day−1, and 0.93 (±0.042) μM, respectively, indicating that NB1 used CM faster under aerobic conditions. Strain NB1 also grew on methanol, ethanol, and acetate under denitrifying and aerobic conditions, but not on methane, formate, or dichloromethane.  相似文献   

6.
Hyphomicrobium chloromethanicum CM2(T), an aerobic methylotrophic member of the alpha subclass of the class proteobacteria, can grow with chloromethane as the sole carbon and energy source. H. chloromethanicum possesses an inducible enzyme system for utilization of chloromethane, in which two polypeptides (67-kDa CmuA and 35-kDa CmuB) are expressed. Previously, four genes, cmuA, cmuB, cmuC, and purU, were shown to be essential for growth of Methylobacterium chloromethanicum on chloromethane. The cmuA and cmuB genes were used as probes to identify homologs in H. chloromethanicum. A cmu gene cluster (9.5 kb) in H. chloromethanicum contained 10 open reading frames: folD (partial), pduX, orf153, orf207, orf225, cmuB, cmuC, cmuA, fmdB, and paaE (partial). CmuA from H. chloromethanicum (67 kDa) showed high identity to CmuA from M. chloromethanicum and contains an N-terminal methyltransferase domain and a C-terminal corrinoid-binding domain. CmuB from H. chloromethanicum is related to a family of methyl transfer proteins and to the CmuB methyltransferase from M. chloromethanicum. CmuC from H. chloromethanicum shows identity to CmuC from M. chloromethanicum and is a putative methyltransferase. folD codes for a methylene-tetrahydrofolate cyclohydrolase, which may be involved in the C(1) transfer pathway for carbon assimilation and CO(2) production, and paaE codes for a putative redox active protein. Molecular analyses and some preliminary biochemical data indicated that the chloromethane utilization pathway in H. chloromethanicum is similar to the corrinoid-dependent methyl transfer system in M. chloromethanicum. PCR primers were developed for successful amplification of cmuA genes from newly isolated chloromethane utilizers and enrichment cultures.  相似文献   

7.
Chloromethane gas is produced naturally in the phyllosphere, the compartment defined as the aboveground parts of vegetation, which hosts a rich bacterial flora. Chloromethane may serve as a growth substrate for specialized aerobic methylotrophic bacteria, which have been isolated from soil and water environments, and use cmu genes for chloromethane utilization. Evidence for the presence of chloromethane-degrading bacteria on the leaf surfaces of Arabidopsis thaliana was obtained by specific quantitative PCR of the cmuA gene encoding the two-domain methyltransferase corrinoid protein of chloromethane dehalogenase. Bacterial strains were isolated on a solid mineral medium with chloromethane as the sole carbon source from liquid mineral medium enrichment cultures inoculated with leaves of A. thaliana. Restriction analysis-based genotyping of cmuA PCR products was used to evaluate the diversity of chloromethane-degrading bacteria during enrichment and after strain isolation. The isolates obtained, affiliated to the genus Hyphomicrobium based on their 16S rRNA gene sequence and the presence of characteristic hyphae, dehalogenate chloromethane, and grow in a liquid culture with chloromethane as the sole carbon and energy source. The cmu genes of these isolates were analysed using new PCR primers, and their sequences were compared with those of previously reported aerobic chloromethane-degrading strains. The three isolates featured a colinear cmuBCA gene arrangement similar to that of all previously characterized strains, except Methylobacterium extorquens CM4 of known genome sequence.  相似文献   

8.
9.
Methylobacterium extorquens AM1 is a facultative methylotrophic Alphaproteobacterium and has been subject to intense study under pure methylotrophic as well as pure heterotrophic growth conditions in the past. Here, we investigated the metabolism of M. extorquens AM1 under mixed substrate conditions, i.e., in the presence of methanol plus succinate. We found that both substrates were co-consumed, and the carbon conversion was two-thirds from succinate and one-third from methanol relative to mol carbon. 13C-methanol labeling and liquid chromatography mass spectrometry analyses revealed the different fates of the carbon from the two substrates. Methanol was primarily oxidized to CO2 for energy generation. However, a portion of the methanol entered biosynthetic reactions via reactions specific to the one-carbon carrier tetrahydrofolate. In contrast, succinate was primarily used to provide precursor metabolites for bulk biomass production. This work opens new perspectives on the role of methylotrophy when substrates are simultaneously available, a situation prevailing under environmental conditions.  相似文献   

10.
High-level expression of chromosomally integrated genes in Methylobacterium extorquens ATCC 55366 was achieved under the control of the strong M. extorquens AM1 methanol dehydrogenase promoter (PmxaF) using the mini-Tn7 transposon system. Stable maintenance and expression of the integrated genes were obtained in the absence of antibiotic selective pressure. Furthermore, using this technology, a multicopy integration protocol for M. extorquens was also developed. Chromosomal integration of one to five copies of the gene encoding the green fluorescent protein (gfp) was achieved. The multicopy-based expression system permitted expression of a preset number of gene copies. A unique specific Tn7 integration locus in the chromosome of M. extorquens, known as the Tn7 attachment site (attTn7 site), was identified. This single attTn7 site was identified in an intergenic region between glmS, which encodes the essential enzyme glucosamine-6-phosphate synthetase, and dhaT, which encodes 1,3-propanediol dehydrogenase. The fact that the integration event is site specific and the fact that the attTn7 site is a noncoding region of the chromosome make the mini-Tn7 transposon system very useful for insertion of target genes and subsequent expression. In all transformants tested, expression and segregation of the transforming gene were stable without generation of secondary mutations in the host. In this paper, we describe single and multicopy chromosome integration and stable expression of heterologous genes (bgl [β-galactosidase], est [esterase], and gfp [green fluorescent protein]) in M. extorquens.  相似文献   

11.
Methylobacterium extorquens AM1 has been shown to accumulate polyhydroxyalkanoate (PHA) composed solely of (R)-3-hydroxybutyrate (3HB) during methylotrophic growth. The present study demonstrated that the wild-type strain AM1 grown under Co2+-deficient conditions accumulated copolyesters of 3HB and a C5-monomer, (R)-3-hydroxyvalerate (3HV), using methanol as the sole carbon source. The 3HV unit was supposed to be derived from propionyl-CoA, synthesized via the ethylmalonyl-CoA pathway impaired by Co2+ limitation. This assumption was strongly supported by the dominant incorporation of the 3HV unit into PHA when a strain lacking propionyl-CoA carboxylase was incubated with methanol. Further genetic engineering of M. extorquens AM1 was employed for the methylotrophic synthesis of PHA copolymers. A recombinant strain of M. extorquens AM1CAc in which the original PHA synthase gene phaC Me had been replaced by phaC Ac , encoding an enzyme with broad substrate specificity from Aeromonas caviae, produced a PHA terpolymer composed of 3HB, 3HV, and a C6-monomer, (R)-3-hydroxyhexanoate, from methanol. The cellular content and molecular weight of the PHA accumulated in the strain AM1CAc were higher than those of PHA in the wild-type strain. The triple deletion of three PHA depolymerase genes in M. extorquens AM1CAc showed no significant effects on growth and PHA biosynthesis properties. Overexpression of the genes encoding β-ketothiolase and NADPH-acetoacetyl-CoA reductase increased the cellular PHA content and 3HV composition in PHA, although the cell growth on methanol was decreased. This study opens up the possibility of producing practical PHA copolymers with methylotrophic bacteria using methanol as a feedstock.  相似文献   

12.
The metabolic pathways of one-carbon compounds utilized by colorless sulfur bacterium Beggiatoa leptomitoformis D-402 were revealed based on comprehensive analysis of its genomic organization, together with physiological, biochemical and molecular biological approaches. Strain D-402 was capable of aerobic methylotrophic growth with methanol as a sole source of carbon and energy and was not capable of methanotrophic growth because of the absence of genes of methane monooxygenases. It was established that methanol can be oxidized to CO2 in three consecutive stages. On the first stage methanol was oxidized to formaldehyde by the two PQQ (pyrroloquinolinequinone)-dependent methanol dehydrogenases (MDH): XoxF and Mdh2. Formaldehyde was further oxidized to formate via the tetrahydromethanopterin (H4MPT) pathway. And on the third stage formate was converted to CO2 by NAD+-dependent formate dehydrogenase Fdh2. Finally, it was established that endogenous CO2, formed as a result of methanol oxidation, was subsequently assimilated for anabolism through the Calvin–Benson–Bassham cycle. The similar way of one-carbon compounds utilization also exists in representatives of another freshwater Beggiatoa species—B. alba.  相似文献   

13.
14.

Background

The introduction and maintenance of plasmids in cells is often associated with a reduction of growth rate. The reason for this growth reduction is unclear in many cases.

Methodology/Principal Findings

We observed a surprisingly large reduction in growth rate of about 50% of Methylobacterium extorquens AM1 during methylotrophic growth in the presence of a plasmid, pCM80 expressing the tetA gene, relative to the wild-type. A less pronounced growth delay during growth under non-methylotrophic growth conditions was observed; this suggested an inhibition of one-carbon metabolism rather than a general growth inhibition or metabolic burden. Metabolome analyses revealed an increase in pool sizes of ethylmalonyl-CoA and methylmalonyl-CoA of more than 6- and 35-fold, respectively, relative to wild type, suggesting a strongly reduced conversion of these central intermediates, which are essential for glyoxylate regeneration in this model methylotroph. Similar results were found for M. extorquens AM1 pCM160 which confers kanamycin resistance. These intermediates of the ethylmalonyl-CoA pathway have in common their conversion by coenzyme B12-dependent mutases, which have cobalt as a central ligand. The one-carbon metabolism-related growth delay was restored by providing higher cobalt concentrations, by heterologous expression of isocitrate lyase as an alternative path for glyoxylate regeneration, or by identification and overproduction of proteins involved in cobalt import.

Conclusions/Significance

This study demonstrates that the introduction of the plasmids leads to an apparent inhibition of the cobalt-dependent enzymes of the ethylmalonyl-CoA pathway. Possible explanations are presented and point to a limited cobalt concentration in the cell as a consequence of the antibiotic stress.  相似文献   

15.

Background

Methylobacterium extorquens AM1 is an aerobic facultative methylotrophic α-proteobacterium that can use reduced one-carbon compounds such as methanol, but also multi-carbon substrates like acetate (C2) or succinate (C4) as sole carbon and energy source. The organism has gained interest as future biotechnological production platform based on methanol as feedstock.

Methodology/Principal Findings

We present a comprehensive study of all postulated enzymes for the assimilation of methanol and their regulation in response to the carbon source. Formaldehyde, which is derived from methanol oxidation, is assimilated via the serine cycle, which starts with glyoxylate and forms acetyl-CoA. Acetyl-CoA is assimilated via the proposed ethylmalonyl-CoA pathway, which thereby regenerates glyoxylate. To further the understanding of the central carbon metabolism we identified and quantified all enzymes of the pathways involved in methanol assimilation. We observed a strict differential regulation of their activity level depending on whether C1, C2 or C4 compounds are used. The enzymes, which are specifically required for the utilization of the individual substrates, were several-fold up-regulated and those not required were down-regulated. The enzymes of the ethylmalonyl-CoA pathway showed specific activities, which were higher than the calculated minimal values that can account for the observed growth rate. Yet, some enzymes of the serine cycle, notably its first and last enzymes serine hydroxymethyl transferase and malate thiokinase, exhibit much lower values and probably are rate limiting during methylotrophic growth. We identified the natural C1 carrying coenzyme as tetrahydropteroyl-tetraglutamate rather than tetrahydrofolate.

Conclusion/Significance

This study provides the first complete picture of the enzymes required for methanol assimilation, the regulation of their activity levels in response to the growth substrate, and the identification of potential growth limiting steps.  相似文献   

16.
17.
Two membrane-bound, reductive dehalogenases that constitute a novel pathway for complete dechlorination of tetrachloroethene (perchloroethylene [PCE]) to ethene were partially purified from an anaerobic microbial enrichment culture containing Dehalococcoides ethenogenes 195. When titanium(III) citrate and methyl viologen were used as reductants, PCE-reductive dehalogenase (PCE-RDase) (51 kDa) dechlorinated PCE to trichloroethene (TCE) at a rate of 20 μmol/min/mg of protein. TCE-reductive dehalogenase (TCE-RDase) (61 kDa) dechlorinated TCE to ethene. TCE, cis-1,2-dichloroethene, and 1,1-dichloroethene were dechlorinated at similar rates, 8 to 12 μmol/min/mg of protein. Vinyl chloride and trans-1,2-dichloroethene were degraded at rates which were approximately 2 orders of magnitude lower. The light-reversible inhibition of TCE-RDase by iodopropane and the light-reversible inhibition of PCE-RDase by iodoethane suggest that both of these dehalogenases contain Co(I) corrinoid cofactors. Isolation and characterization of these novel bacterial enzymes provided further insight into the catalytic mechanisms of biological reductive dehalogenation.  相似文献   

18.
Corrinoids are essential cofactors of reductive dehalogenases in anaerobic bacteria. Microorganisms mediating reductive dechlorination as part of their energy metabolism are either capable of de novo corrinoid biosynthesis (e.g., Desulfitobacterium spp.) or dependent on exogenous vitamin B12 (e.g., Dehalococcoides spp.). In this study, the impact of exogenous vitamin B12 (cyanocobalamin) and of tetrachloroethene (PCE) on the synthesis and the subcellular localization of the reductive PCE dehalogenase was investigated in the Gram-positive Desulfitobacterium hafniense strain Y51, a bacterium able to synthesize corrinoids de novo. PCE-depleted cells grown for several subcultivation steps on fumarate as an alternative electron acceptor lost the tetrachloroethene-reductive dehalogenase (PceA) activity by the transposition of the pce gene cluster. In the absence of vitamin B12, a gradual decrease of the PceA activity and protein amount was observed; after 5 subcultivation steps with 10% inoculum, more than 90% of the enzyme activity and of the PceA protein was lost. In the presence of vitamin B12, a significant delay in the decrease of the PceA activity with an ∼90% loss after 20 subcultivation steps was observed. This corresponded to the decrease in the pceA gene level, indicating that exogenous vitamin B12 hampered the transposition of the pce gene cluster. In the absence or presence of exogenous vitamin B12, the intracellular corrinoid level decreased in fumarate-grown cells and the PceA precursor formed catalytically inactive, corrinoid-free multiprotein aggregates. The data indicate that exogenous vitamin B12 is not incorporated into the PceA precursor, even though it affects the transposition of the pce gene cluster.  相似文献   

19.
Corrinoids are cobalt-containing molecules that function as enzyme cofactors in a wide variety of organisms but are produced solely by a subset of prokaryotes. Specific corrinoids are identified by the structure of their axial ligands. The lower axial ligand of a corrinoid can be a benzimidazole, purine, or phenolic compound. Though it is known that many organisms obtain corrinoids from the environment, the variety of corrinoids that can serve as cofactors for any one organism is largely unstudied. Here, we examine the range of corrinoids that function as cofactors for corrinoid-dependent metabolism in Dehalococcoides mccartyi strain 195. Dehalococcoides bacteria play an important role in the bioremediation of chlorinated solvents in the environment because of their unique ability to convert the common groundwater contaminants perchloroethene and trichloroethene to the innocuous end product ethene. All isolated D. mccartyi strains require exogenous corrinoids such as vitamin B12 for growth. However, like many other corrinoid-dependent bacteria, none of the well-characterized D. mccartyi strains has been shown to be capable of synthesizing corrinoids de novo. In this study, we investigate the ability of D. mccartyi strain 195 to use specific corrinoids, as well as its ability to modify imported corrinoids to a functional form. We show that strain 195 can use only specific corrinoids containing benzimidazole lower ligands but is capable of remodeling other corrinoids by lower ligand replacement when provided a functional benzimidazole base. This study of corrinoid utilization and modification by D. mccartyi provides insight into the array of strategies that microorganisms employ in acquiring essential nutrients from the environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号