首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tsyregma Li  Bruno Antonsson 《BBA》2010,1797(1):52-62
In the present study, we compared alkali-resistant BAX insertion into the outer mitochondrial membrane, mitochondrial remodeling, mitochondrial membrane potential changes, and cytochrome c (Cyt c) release from isolated brain mitochondria triggered by recombinant BAX oligomerized with 1% octyl glucoside (BAXoligo) and by a combination of monomeric BAX (BAXmono) and caspase 8-cleaved C-terminal fragment of recombinant BID (truncated BID, tcBID). We also examined whether the effects induced by BAXoligo or by BAXmono activated with tcBID depended on induction of the mitochondrial permeability transition. The results obtained in this study revealed that tcBID plus BAXmono produced BAX insertion and Cyt c release without overt changes in mitochondrial morphology. On the contrary, treatment of mitochondria with BAXoligo resulted in BAX insertion and Cyt c release, which were accompanied by gross distortion of mitochondrial morphology. The effects of BAXoligo could be at least partially suppressed by mitochondrial depolarization. The effects of tcBID plus BAXmono were insensitive to depolarization. BAXoligo produced similar BAX insertion, mitochondrial remodeling, and Cyt c release in KCl- and in N-methyl-d-glucamine-based incubation media indicating a non-essential role for K+ influx into mitochondria in these processes. A combination of cyclosporin A and ADP, inhibitors of the mitochondrial permeability transition, attenuated Cyt c release, mitochondrial remodeling, and depolarization induced by BAXoligo, but failed to influence the effects produced by tcBID plus BAXmono. Thus, our results suggest a significant difference in the mechanisms of the outer mitochondrial membrane permeabilization and Cyt c release induced by detergent-oligomerized BAXoligo and by BAX activated with tcBID.  相似文献   

2.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   

3.
猪心线粒体Fo的纯化、重建及其质子转运功能   总被引:1,自引:0,他引:1  
比较了猪心线粒体FoF1-ATPase膜部分Fo的四种纯化方法.结果表明,用NaBr从亚线粒体除去FoF1-ATPase的水溶性部分F1-ATPase后,再以CHAPS增溶,并经蔗糖梯度离心,可获得高纯度的Fo.SDS-聚丙烯酰胺凝胶电泳鉴定表明,纯化的Fo含有b、OSCP(寡霉素敏感授予蛋白)、d、a、e、F6、IF1、A6L和c等9种亚基.用去污剂稀释法将纯化的Fo在脂质体上重建后,重建Fo表现较高的被动转运质子活性.这为在体外深入研究Fo的活性、构象与膜脂的关系,以及Fo与F1-ATPase的组装等提供了很好的实验模型.  相似文献   

4.
The bioenergetics of IF1 transiently silenced cancer cells has been extensively investigated, but the role of IF1 (the natural inhibitor protein of F1F0-ATPase) in cancer cell metabolism is still uncertain. To shed light on this issue, we established a method to prepare stably IF1-silenced human osteosarcoma clones and explored the bioenergetics of IF1 null cancer cells. We showed that IF1-silenced cells proliferate normally, consume glucose, and release lactate as controls do, and contain a normal steady-state ATP level. However, IF1-silenced cells displayed an enhanced steady-state mitochondrial membrane potential and consistently showed a reduced ADP-stimulated respiration rate. In the parental cells (i.e. control cells containing IF1) the inhibitor protein was found to be associated with the dimeric form of the ATP synthase complex, therefore we propose that the interaction of IF1 with the complex either directly, by increasing the catalytic activity of the enzyme, or indirectly, by improving the structure of mitochondrial cristae, can increase the oxidative phosphorylation rate in osteosarcoma cells grown under normoxic conditions.  相似文献   

5.
Sergio de la Fuente 《BBA》2010,1797(10):1727-1735
We have investigated the kinetics of mitochondrial Ca2+ influx and efflux and their dependence on cytosolic [Ca2+] and [Na+] using low-Ca2+-affinity aequorin. The rate of Ca2+ release from mitochondria increased linearly with mitochondrial [Ca2+] ([Ca2+]M). Na+-dependent Ca2+ release was predominant al low [Ca2+]M but saturated at [Ca2+]M around 400 μM, while Na+-independent Ca2+ release was very slow at [Ca2+]M below 200 μM, and then increased at higher [Ca2+]M, perhaps through the opening of a new pathway. Half-maximal activation of Na+-dependent Ca2+ release occurred at 5-10 mM [Na+], within the physiological range of cytosolic [Na+]. Ca2+ entry rates were comparable in size to Ca2+ exit rates at cytosolic [Ca2+] ([Ca2+]c) below 7 μM, but the rate of uptake was dramatically accelerated at higher [Ca2+]c. As a consequence, the presence of [Na+] considerably reduced the rate of [Ca2+]M increase at [Ca2+]c below 7 μM, but its effect was hardly appreciable at 10 μM [Ca2+]c. Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca2+]M transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca2+ buffering, and comparison of our results with data on total mitochondrial Ca2+ fluxes indicate that the mitochondrial Ca2+ bound/Ca2+ free ratio is around 10- to 100-fold for most of the observed [Ca2+]M range and suggest that massive phosphate precipitation can only occur when [Ca2+]M reaches the millimolar range.  相似文献   

6.
Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes.  相似文献   

7.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

8.
The natural inhibitor proteins IF1 regulate mitochondrial F0F1ATPsynthase in a wide range of species. We characterized the interaction of CaM with purified bovine IF1, two bovine IF1 synthetic peptides, as well as two homologous proteins from yeast, namely IF1 and STF1. Fluorometric analyses showed that bovine and yeast inhibitors bind CaM with a 1:1 stoichiometry in the pH range between 5 and 8 and that CaM-IF1 interaction is Ca2+-dependent. Bovine and yeast IF1 have intermediate binding affinity for CaM, while the Kd (dissociation constant) of the STF1-CaM interaction is slightly higher. Binding studies of CaM with bovine IF1 synthetic peptides allowed us to identify bovine IF1 sequence 33–42 as the putative CaM-binding region. Sequence alignment revealed that this region contains a hydrophobic motif for CaM binding, highly conserved in both yeast IF1 and STF1 sequences. In addition, the same region in bovine IF1 has an IQ motif for CaM binding, conserved as an IQ-like motif in yeast IF1 but not in STF1. Based on the pH and Ca2+ dependence of IF1 interaction with CaM, we suggest that the complex can be formed outside mitochondria, where CaM could regulate IF1 trafficking or additional IF1 roles not yet clarified.  相似文献   

9.
Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP3R) serve to discharge Ca2+ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP3R isoforms and protect cells from apoptosis, reducing ER Ca2+ release. However, it has not been elucidated which IP3R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP3R I, strongly suppresses IP3-mediated Ca2+ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca2+ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca2+ release. Moreover, regulating Ca2+ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP3R III, leading to diminished Ca2+ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt.  相似文献   

10.
F0F1ATPsynthase is now known to be expressed as a plasma membrane receptor for several extracellular ligands. On hepatocytes, ecto–F0F1ATPsynthase binds apoA–I and triggers HDL endocytosis concomitant with ATP hydrolysis. Considering that inhibitor protein IF1 was shown to regulate the hydrolytic activity of ecto–F0F1ATPsynthase and to interact with calmodulin (CaM) in vitro, we investigated the subcellular distributions of IF1, calmodulin (CaM), OSCP and β subunits of F0F1ATPsynthase in HepG2 cells. Using immunofluorescence and Western blotting, we found that around 50% of total cellular IF1 is localized outside mitochondria, a relevant amount of which is associated to the plasma membrane where we also found Ca2+–CaM, OSCP and β. Confocal microscopy showed that IF1 colocalized with Ca2+–CaM on plasma membrane but not in mitochondria, suggesting that Ca2+–CaM may modulate the cell surface availability of IF1 and thus its ability to inhibit ATP hydrolysis by ecto–F0F1ATPsynthase. These observations support a hypothesis that the IF1–Ca2+–CaM complex, forming on plasma membrane, functions in the cellular regulation of HDL endocytosis by hepatocytes.  相似文献   

11.
12.
VDAC1, an outer mitochondrial membrane (OMM) protein, is crucial for regulating mitochondrial metabolic and energetic functions and acts as a convergence point for various cell survival and death signals. VDAC1 is also a key player in apoptosis, involved in cytochrome c (Cyto c) release and interactions with anti-apoptotic proteins. Recently, we demonstrated that various pro-apoptotic agents induce VDAC1 oligomerization and proposed that a channel formed by VDAC1 oligomers mediates cytochrome c release. As VDAC1 transports Ca2 + across the OMM and because Ca2 + has been implicated in apoptosis induction, we addressed the relationship between cytosolic Ca2 + levels ([Ca2 +]i), VDAC1 oligomerization and apoptosis induction. We demonstrate that different apoptosis inducers elevate cytosolic Ca2 + and induce VDAC1 over-expression. Direct elevation of [Ca2 +]i by the Ca2 +-mobilizing agents A23187, ionomycin and thapsigargin also resulted in VDAC1 over-expression, VDAC1 oligomerization and apoptosis. In contrast, decreasing [Ca2 +]i using the cell-permeable Ca2 +-chelating reagent BAPTA-AM inhibited VDAC1 over-expression, VDAC1 oligomerization and apoptosis. Correlation between the increase in VDAC1 levels and oligomerization, [Ca2 +]i levels and apoptosis induction, as induced by H2O2 or As2O3, was also obtained. On the other hand, cells transfected to overexpress VDAC1 presented Ca2 +-independent VDAC1 oligomerization, cytochrome c release and apoptosis, suggesting that [Ca2 +]i elevation is not a pre-requisite for apoptosis induction when VDAC1 is over-expressed. The results suggest that Ca2 + promotes VDAC1 over-expression by an as yet unknown signaling pathway, leading to VDAC1 oligomerization, ultimately resulting in apoptosis. These findings provide a new insight into the mechanism of action of existing anti-cancer drugs involving induction of VDAC1 over-expression as a mechanism for inducing apoptosis. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau  相似文献   

13.
Zn2+ caused a noninhibitory binding of IF1 to mitochondrial membranes in both rabbit heart SMP and intact rabbit heart mitochondria. This Zn2+-induced IF1 binding required the presence of at least trace amounts of MgATP and was essentially independent of pH between 6.2 and 8.2. Addition of Zn2+ after the formation of fully inhibited IF1-ATPase complexes very slowly reversed IF1-mediated ATPase inhibition without causing significant IF1 release from the membranes. When Zn2+ was added during the state 4 energization of ischemic mitochondria in which IF1 was already functionally bound, it slowed somewhat energy-driven ATPase activation. This slowing was probably due to the fairly large depressing effect Zn2+ had upon membrane potential development, but Zn2+ did not decrease the degree of ATPase activation eventually reached at 20 min of state 4 incubation. Zn2+ also preempted normal IF1 release from the membranes, causing what little inhibitor that was released to rebind to the enzyme in noninhibitory IF1-ATPase complexes. The data suggest that IF1 can interact with the ATPase in two ways or through two kinds of sites: (a) a noninhibitory interaction involving a noninhibitory IF1 conformation and/or and IF1 docking site on the enzyme and (b) an inhibitory interaction involving an inhibitory IF1 conformation and/or a distinct ATPase activity regulatory site. Zn2+ appears to have the dual effect of stabilizing the noninhibitory IF1-ATPase interaction and possibily a noninhibitory IF1 conformation while concomitantly preventing the formation of an inhibitory IF1-ATPase interaction and possibly an inhibitory IF1 conformation, regardless of pH. While the data do not rule out direct effects of Zn2+ on either free IF1 or the free enzyme, they suggest that Zn2+ cannot interact readily with either the inhibitor or the enzyme once functional IF1-ATPase complexes are formed.  相似文献   

14.
Many agonists bring about their effects on cellular functions through a rise incytosolic [Ca2+]([Ca2+]c) mediated by the second messenger inositol 1,4,5-trisphosphate (IP3). Imaging studiesof single cells have demonstrated that [Ca2+]c signals display cell specific spatiotemporalorganization that is established by coordinated activation of IP3 receptor Ca2+ channels.Evidence emerges that cytosolic calcium signals elicited by activation of the IP3 receptors areefficiently transmitted to the mitochondria. An important function of mitochondrial calciumsignals is to activate the Ca2+-sensitive mitochondrial dehydrogenases, and thereby to meetdemands for increased energy in stimulated cells. Activation of the permeability transitionpore (PTP) by mitochondrial calcium signals may also be involved in the control of cell death.Furthermore, mitochondrial Ca2+ transport appears to modulate the spatiotemporal organizationof [Ca2+]c responses evoked by IP3 and so mitochondria may be important in cytosolic calciumsignaling as well. This paper summarizes recent research to elucidate the mechanisms andsignificance of IP3-dependent mitochondrial calcium signaling.  相似文献   

15.
The effect of nanomolar concentrations of PBR/TSPO ligands—Ro 5-4864, PK11195, and PPIX—on Ca2+-induced permeability transition pore (PTP) opening in isolated rat brain mitochondria was investigated. PBR/TSPO agonist Ro 5-4864 (100 nM) and endogenous ligand PPIX (1 μM) were shown to stimulate PTP opening, while antagonist PK11195 (100 nM) suppressed this process. Correlation between PBR ligand action on PTP opening and phosphorylation of a 3.5 kDa polypeptide was investigated. In intact brain mitochondria, incorporation of [γ-32P]ATP into 3.5 kDa peptide was decreased in the presence of Ro 5-4864 and PPIX and increased in the presence of PK11195. At threshold Ca2+ concentrations leading to PTP opening, PBR/TSPO ligands were found to stimulate dephosphorylation of the 3.5 kDa peptide. Specific anti-PBR/TSPO antibody prevented both PTP opening and dephosphorylation of the 3.5-kDa peptide. The peptide was identified as subunit c of FoF1-ATPase by Western blot using specific anti-subunit c antibody. The results suggest that subunit c of FoF1-ATPase could be an additional target for PBR/TSPO ligands action, is subjected to Ca2+- and TSPO-dependent phosphorylation/dephosphorylation, and is involved in PTP operation in mitochondria.  相似文献   

16.
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function.  相似文献   

17.
Phosphorylated and non-phosphorylated forms of the F0F1-ATPase subunit c from rat liver mitochondria (RLM) were purified and their effect on the opening of the permeability transition pore (mPTP) was investigated. Addition of dephosphorylated subunit c to RLM induced mitochondrial swelling, decreased the membrane potential and reduced the Ca2+ uptake capacity, which was prevented by cyclosporin A. The same effect was observed in the presence of storage subunit c purified from livers of sheep affected with ceroid lipofuscinosis. In black-lipid bilayer membranes subunit c increased the conductance due to formation of single channels with fast and slow kinetics. The dephosphorylated subunit c formed channels with slow kinetics, i.e. the open state being of significantly longer duration than in the case of channels formed by the phosphorylated form that had short life spans and fast kinetics. The channels formed were cation-selective more so with the phosphorylated form. Subunit c of rat liver mitochondria was able to bind Ca2+. Collectively, the data allowed us to suppose that subunit c F0F1-ATPase might be a structural/regulatory component of mPTP exerting its role in dependence on phosphorylation status.  相似文献   

18.
S Chi  W Cai  P Liu  Z Zhang  X Chen  L Gao  J Qi  L Bi  L Chen    Z Qi 《Cell death & disease》2010,1(1):e13
Stroke is a long-term disability and one of the leading causes of death. However, no successful therapeutic intervention is available for the majority of stroke patients. In this study, we explored a traditional Chinese medicine Baifuzi (Typhonium giganteum Engl.). We show, at first, that the ethanol extract of Baifuzi exerts neuroprotective effects against brain damage induced by transient global or focal cerebral ischemia in rats and mice. Second, the extract activated large-conductance Ca2+-activated K+ channel (BKCa) channels, and BKCa channel blockade suppressed the neuroprotection of the extract, suggesting that the BKCa is the molecular target of Baifuzi. Third, Baifuzi cerebroside (Baifuzi-CB), purified from its ethanol extract, activated BKCa channels in a manner similar to that of the extract. Fourth, the stress axis hormone-regulated exon (STREX) domain of the BKCa channel directly interacted with Baifuzi-CB, and its deletion suppressed channel activation by Baifuzi-CB. These results indicate that Baifuzi-CB activated the BKCa channel through its direct interaction with the STREX domain of the channel and suggests that Baifuzi-CB merits exploration as a potential therapeutic agent for treating brain ischemia.  相似文献   

19.
Zhu M  Li M  Yang F  Ou X  Ren Q  Gao H  Zhu C  Guo J 《Neurochemistry international》2011,59(6):739-748
It is well established that stimulating delta-opioid receptor (DOR) with its specific agonists elicits neuroprotection against hypoxia/ischemia. Mitochondrial dysfunction plays a key role in hypoxic neuronal injury, but the effects of DOR activation on mitochondrial dysfunction in neurons are poorly elucidated. In this investigation, we studied the effects of [d-Ala2, d-Leu5] enkephalin (DADLE), a potent DOR agonist, on acute mitochondrial dysfunction and ensuing cell damage induced by sodium azide in primary rat cortical neuronal cultures, and explored possible mechanisms underlying. Here, we show that DADLE reverses NaN3-induced acute mitochondrial dysfunction by selectively activating DOR, mainly including mitochondrial membrane depolarization, mitochondrial Ca2+ overload and reactive oxygen species generation. DOR stimulation also inhibits cytochrome c release and caspase-3 activation, and attenuates neuronal death caused by acute NaN3 insults. Furthermore, DOR activation with DADLE protects neurons from acute NaN3 insults mainly through PKC-ERK pathway, and mitochondrial ERK activation is especially required for DOR neuroprotection against acute mitochondrial dysfunction.  相似文献   

20.
Mitochondria are central to heart function and dysfunction, and the pathways activated by different cardioprotective interventions mostly converge on mitochondria. In a context of perspectives in innate and acquired cardioprotection, we review some recent advances in F0F1ATPsynthase structure/function and regulation in cardiac cells. We focus on three topics regarding the mitochondrial F0F1ATPsynthase and the plasma membrane enzyme, i.e.: i) the crucial role of cardiac mitochondrial F0F1ATPsynthase regulation by the inhibitory protein IF1 in heart preconditioning strategies; ii) the structure and function of mitochondrial F0F1ATPsynthase oligomers in mammalian myocardium as possible endogenous factors of mitochondria resistance to ischemic insult; iii) the external location and characterization of plasma membrane F0F1 ATP synthase in search for possible actors of its regulation, such as IF1 and calmodulin, at cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号