首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond   总被引:5,自引:0,他引:5  
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the brain. Diversity in excitatory signalling arises, in part, from functional differences among AMPAR subtypes. Although the rapid insertion or deletion of AMPARs is recognised as important for the expression of conventional forms of long-term synaptic plasticity--triggered, for example, by Ca2+ entry through NMDA-type glutamate receptors--only recently has attention focused on novel forms of plasticity that are regulated by, or alter the expression of, Ca2+-permeable AMPARs. The dynamic regulation of these receptors is important for normal synaptic function and in disease states.  相似文献   

2.
The number of synaptic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPARs) controls the strength of excitatory transmission. AMPARs cycle between internal endosomal compartments and the plasma membrane. Interactions between the AMPAR subunit GluR2, glutamate receptor interacting protein 1 (GRIP1), and the endosomal protein NEEP21 are essential for correct GluR2 recycling. Here we show that an about 85-kDa protein kinase phosphorylates GRIP1 on serine 917. This kinase is present in NEEP21 immunocomplexes and is activated in okadaic acid-treated neurons. Pulldown assays and atomic force microscopy indicate that phosphorylated GRIP shows reduced binding to NEEP21. AMPA or N-methyl-D-aspartate stimulation of hippocampal neurons induces delayed phosphorylation of the same serine 917. A wild type carboxy-terminal GRIP1 fragment expressed in hippocampal neurons interferes with GluR2 surface expression. On the contrary, a S917D mutant fragment does not interfere with GluR2 surface expression. Likewise, coexpression of GluR2 together with full-length wild type GRIP1 enhances GluR2 surface expression in fibroblasts, whereas full-length GRIP1-S917D had no effect. This indicates that this serine residue is implicated in AMPAR cycling. Our results identify an important regulatory mechanism in the trafficking of AMPAR subunits between internal compartments and the plasma membrane.  相似文献   

3.
Direct structural insight into the mechanisms underlying activation and desensitization remain unavailable for the pentameric ligand-gated channel family. Here, we report the structural rearrangements underlying gating transitions in membrane-embedded GLIC, a prokaryotic homologue, using site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. We particularly probed the conformation of pore-lining second transmembrane segment (M2) under conditions that favor the closed and the ligand-bound desensitized states. The spin label mobility, intersubunit spin-spin proximity, and the solvent-accessibility parameters in the two states clearly delineate the underlying protein motions within M2. Our results show that during activation the extracellular hydrophobic region undergoes major changes involving an outward translational movement, away from the pore axis, leading to an increase in the pore diameter, whereas the lower end of M2 remains relatively immobile. Most notably, during desensitization, the intervening polar residues in the middle of M2 move closer to form a solvent-occluded barrier and thereby reveal the location of a distinct desensitization gate. In comparison with the crystal structure of GLIC, the structural dynamics of the channel in a membrane environment suggest a more loosely packed conformation with water-accessible intrasubunit vestibules penetrating from the extracellular end all the way to the middle of M2 in the closed state. These regions have been implicated to play a major role in alcohol and drug modulation. Overall, these findings represent a key step toward understanding the fundamentals of gating mechanisms in this class of channels.  相似文献   

4.
Glutamate-gated ion channels (ionotropic glutamate receptors, iGluRs) sense the extracellular milieu via an extensive extracellular portion, comprised of two clamshell-shaped segments. The distal, N-terminal domain (NTD) has allosteric potential in NMDA-type iGluRs, which has not been ascribed to the analogous domain in AMPA receptors (AMPARs). In this study, we present new structural data uncovering dynamic properties of the GluA2 and GluA3 AMPAR NTDs. GluA3 features a zipped-open dimer interface with unconstrained lower clamshell lobes, reminiscent of metabotropic GluRs (mGluRs). The resulting labile interface supports interprotomer rotations, which can be transmitted to downstream receptor segments. Normal mode analysis reveals two dominant mechanisms of AMPAR NTD motion: intraprotomer clamshell motions and interprotomer counter-rotations, as well as accessible interconversion between AMPAR and mGluR conformations. In addition, we detect electron density for a potential ligand in the GluA2 interlobe cleft, which may trigger lobe motions. Together, these data support a dynamic role for the AMPAR NTDs, which widens the allosteric landscape of the receptor and could provide a novel target for ligand development.  相似文献   

5.
The gating ring of cyclic nucleotide-modulated channels is proposed to be either a two-fold symmetric dimer of dimers or a four-fold symmetric tetramer based on high-resolution structure data of soluble cyclic nucleotide-binding domains and functional data on intact channels. We addressed this controversy by obtaining structural data on an intact, full-length, cyclic nucleotide-modulated potassium channel, MloK1, from Mesorhizobium loti, which also features a putative voltage-sensor. We present here the 3D single-particle structure by transmission electron microscopy and the projection map of membrane-reconstituted 2D crystals of MloK1 in the presence of cAMP. Our data show a four-fold symmetric arrangement of the CNBDs, separated by discrete gaps. A homology model for full-length MloK1 suggests a vertical orientation for the CNBDs. The 2D crystal packing in the membrane-embedded state is compatible with the S1-S4 domains in the vertical "up" state.  相似文献   

6.
In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which has the conductivity of the plug deletion mutant. The number of ion-conducting channels inserted into the planar bilayer per fusion event roughly equals the number of SecYEG channels counted by fluorescence correlation spectroscopy in a single proteoliposome. Thus, the open probability of the channel must be close to unity. To prevent the otherwise lethal proton leak, a closed post-translational conformation of the SecYEG complex bound to a ribosome must exist.  相似文献   

7.
α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) are the primary mediators of excitatory synaptic transmission in the brain. Alterations in AMPAR localization and turnover have been considered critical mechanisms underpinning synaptic plasticity and higher brain functions, but the molecular processes that control AMPAR trafficking and stability are still not fully understood. Here, we report that mammalian AMPARs are subject to ubiquitination in neurons and in transfected heterologous cells. Ubiquitination facilitates AMPAR endocytosis, leading to a reduction in AMPAR cell-surface localization and total receptor abundance. Mutation of lysine residues to arginine residues at the glutamate receptor subunit 1 (GluA1) C-terminus dramatically reduces GluA1 ubiquitination and abolishes ubiquitin-dependent GluA1 internalization and degradation, indicating that the lysine residues, particularly K868, are sites of ubiquitination. We also find that the E3 ligase neural precursor cell expressed, developmentally down-regulated 4 (Nedd4) is enriched in synaptosomes and co-localizes and associates with AMPARs in neurons. Nedd4 expression leads to AMPAR ubiquitination, leading to reduced AMPAR surface expression and suppressed excitatory synaptic transmission. Conversely, knockdown of Nedd4 by specific siRNAs abolishes AMPAR ubiquitination. These data indicate that Nedd4 is the E3 ubiquitin ligase responsible for AMPAR ubiquitination, a modification that regulates multiple aspects of AMPAR molecular biology including trafficking, localization and stability.  相似文献   

8.
AMPA-type glutamate receptors (AMPARs) are responsible for a variety of processes in the mammalian brain including fast excitatory neurotransmission, postsynaptic plasticity, or synapse development. Here, with comprehensive and quantitative proteomic analyses, we demonstrate that native AMPARs are macromolecular complexes with a large molecular diversity. This diversity results from coassembly of the known AMPAR subunits, pore-forming GluA and three types of auxiliary proteins, with 21 additional constituents, mostly secreted proteins or transmembrane proteins of different classes. Their integration at distinct abundance and stability establishes the heteromultimeric architecture of native AMPAR complexes: a defined core with a variable periphery resulting in an apparent molecular mass between 0.6 and 1 MDa. The additional constituents change the gating properties of AMPARs and provide links to the protein dynamics fundamental for the complex role of AMPARs in formation and operation of glutamatergic synapses.  相似文献   

9.
AMPA-type glutamate receptors (AMPARs) play a critical role in mediating fast excitatory synaptic transmission in the brain. Alterations in receptor expression, distribution, and trafficking have been shown to underlie synaptic plasticity and higher brain functions, including learning and memory, as well as brain dysfunctions such as drug addiction and psychological disorders. Therefore, it is essential to elucidate the molecular mechanisms that regulate AMPAR dynamics. We have shown previously that mammalian AMPARs are subject to posttranslational modification by ubiquitin, with AMPAR ubiquitination enhancing receptor internalization and reducing AMPAR cell surface expression. Here we report a crucial role for epidermal growth factor receptor substrate 15 (Eps15), an endocytic adaptor, in ubiquitination-dependent AMPAR internalization. We find that suppression or overexpression of Eps15 results in changes in AMPAR surface expression. Eps15 interacts with AMPARs, which requires Nedd4-mediated GluA1 ubiquitination and the ubiquitin-interacting motif of Eps15. Importantly, we find that Eps15 plays an important role in AMPAR internalization. Knockdown of Eps15 suppresses the internalization of GluA1 but not the mutant GluA1 that lacks ubiquitination sites, indicating a role of Eps15 for the internalization of ubiquitinated AMPARs. These results reveal a novel molecular mechanism employed specifically for the trafficking of the ubiquitin-modified AMPARs.  相似文献   

10.
Voltage-gated K+ (Kv) channels are molecular switches that sense membrane potential and in response open to allow K+ ions to diffuse out of the cell. In these proteins, sensor and pore belong to two distinct structural modules. We previously showed that the pore module alone is a robust yet dynamic structural unit in lipid membranes and that it senses potential and gates open to conduct K+ with unchanged fidelity. The implication is that the voltage sensitivity of K+ channels is not solely encoded in the sensor. Given that the coupling between sensor and pore remains elusive, we asked whether it is then possible to convert a pore module characterized by brief openings into a conductor with a prolonged lifetime in the open state. The strategy involves selected probes targeted to the filter gate of the channel aiming to modulate the probability of the channel being open assayed by single channel recordings from the sensorless pore module reconstituted in lipid bilayers. Here we show that the premature closing of the pore is bypassed by association of the filter gate with two novel open conformation stabilizers: an antidepressant and a peptide toxin known to act selectively on Kv channels. Such stabilization of the conductive conformation of the channel is faithfully mimicked by the covalent attachment of fluorescein at a cysteine residue selectively introduced near the filter gate. This modulation prolongs the occupancy of permeant ions at the gate. It is this longer embrace between ion and gate that we conjecture underlies the observed stabilization of the conductive conformation. This study provides a new way of thinking about gating.  相似文献   

11.
TARPs and the AMPA receptor trafficking paradox   总被引:1,自引:0,他引:1  
Ziff EB 《Neuron》2007,53(5):627-633
AMPA receptors (AMPARs) conduct fast, excitatory currents that depolarize neurons and trigger action potentials. AMPARs took on new importance when it was shown that AMPAR transport can increase or decrease the number of AMPARs at synapses and give rise to synapse plasticity, including long-term potentiation (LTP) and long-term depression (LTD). This review considers how transmembrane AMPAR regulatory proteins (TARPs), a novel family of AMPAR auxiliary subunits, have changed our view of AMPAR transport and raised some perplexing questions.  相似文献   

12.
The prevailing view at present is that postsynaptic expression of the classical NMDA receptor-dependent long-term potentiation relies on an increase in the numbers of local AMPA receptors (AMPARs). This is thought to parallel an expansion of postsynaptic cell specializations, for instance dendritic spine heads, which accommodate synaptic receptor proteins. However, glutamate released into the synaptic cleft can normally activate only a hotspot of low-affinity AMPARs that occur in the vicinity of the release site. How the enlargement of the AMPAR pool is causally related to the potentiated AMPAR current remains therefore poorly understood. To understand possible scenarios of postsynaptic potentiation, here we explore a detailed Monte Carlo model of the typical small excitatory synapse. Simulations suggest that approximately 50% increase in the synaptic AMPAR current could be provided by expanding the existing AMPAR pool at the expense of 100–200% new AMPARs added at the same packing density. Alternatively, reducing the inter-receptor distances by only 30–35% could achieve a similar level of current potentiation without any changes in the receptor numbers. The NMDA receptor current also appears sensitive to the NMDA receptor crowding. Our observations provide a quantitative framework for understanding the ‘resource-efficient’ ways to enact use-dependent changes in the architecture of central synapses.  相似文献   

13.
Yao G  Zong Y  Gu S  Zhou J  Xu H  Mathews II  Jin R 《The Biochemical journal》2011,438(2):255-263
The AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) subfamily of iGluRs (ionotropic glutamate receptors) is essential for fast excitatory neurotransmission in the central nervous system. The malfunction of AMPARs (AMPA receptors) has been implicated in many neurological diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The active channels of AMPARs and other iGluR subfamilies are tetramers formed exclusively by assembly of subunits within the same subfamily. It has been proposed that the assembly process is controlled mainly by the extracellular ATD (N-terminal domain) of iGluR. In addition, ATD has also been implicated in synaptogenesis, iGluR trafficking and trans-synaptic signalling, through unknown mechanisms. We report in the present study a 2.5 ? (1 ?=0.1 nm) resolution crystal structure of the ATD of GluA1. Comparative analyses of the structure of GluA1-ATD and other subunits sheds light on our understanding of how ATD drives subfamily-specific assembly of AMPARs. In addition, analysis of the crystal lattice of GluA1-ATD suggests a novel mechanism by which the ATD might participate in inter-tetramer AMPAR clustering, as well as in trans-synaptic protein-protein interactions.  相似文献   

14.
Ion channel biogenesis involves an intricate interplay between subunit folding and assembly. Channel stoichiometries vary and give rise to diverse functions, which impacts on neuronal signalling. AMPA glutamate receptor (AMPAR) assembly is modulated by RNA processing. Here, we provide mechanistic insight into this process. First, we show that a single alternatively spliced residue within the ligand-binding domain alters AMPAR secretion from the ER. Local contacts differ between Leu758 of the GluR2-flop splice form as compared with the flip-specific Val758, which is transmitted globally to alter resensitization kinetics. Detailed biochemical and functional analysis of mutants suggest that AMPARs sample the gating cascade prior to ER export. Irreversibly locking the receptor within various states of the cascade severely attenuates ER transit. Alternative RNA processing by contrast, shifts equilibria between transition states reversibly and thereby modulates secretion kinetics. These data reveal how RNA processing tunes AMPAR biogenesis, and imply that gating transitions in the ER determine iGluR secretory traffic.  相似文献   

15.
Although the Torpedo nicotinic acetylcholine receptor (nAChR) reconstituted into phosphatidylcholine (PC) membranes lacking cholesterol and anionic lipids adopts a conformation where agonist binding is uncoupled from channel gating, the underlying mechanism remains to be defined. Here, we examine the mechanism behind lipid-dependent uncoupling by comparing the propensities of two prokaryotic homologs, Gloebacter and Erwinia ligand-gated ion channel (GLIC and ELIC, respectively), to adopt a similar uncoupled conformation. Membrane-reconstituted GLIC and ELIC both exhibit folded structures in the minimal PC membranes that stabilize an uncoupled nAChR. GLIC, with a large number of aromatic interactions at the interface between the outermost transmembrane α-helix, M4, and the adjacent transmembrane α-helices, M1 and M3, retains the ability to flux cations in this uncoupling PC membrane environment. In contrast, ELIC, with a level of aromatic interactions intermediate between that of the nAChR and GLIC, does not undergo agonist-induced channel gating, although it does not exhibit the expected biophysical characteristics of the uncoupled state. Engineering new aromatic interactions at the M4-M1/M3 interface to promote effective M4 interactions with M1/M3, however, increases the stability of the transmembrane domain to restore channel function. Our data provide direct evidence that M4 interactions with M1/M3 are modulated during lipid sensing. Aromatic residues strengthen M4 interactions with M1/M3 to reduce the sensitivities of pentameric ligand-gated ion channels to their surrounding membrane environment.  相似文献   

16.
Pentameric ligand-gated ion channels (LGICs) play an important role in fast synaptic signal transduction. Binding of agonists to the β-sheet-structured extracellular domain opens an ion channel in the transmembrane α-helical region of the LGIC. How the structurally distinct and distant domains are functionally coupled for such central transmembrane signaling processes remains an open question. To obtain detailed information about the stability of and the coupling between these different functional domains, we analyzed the thermal unfolding of a homopentameric LGIC, the 5-hydroxytryptamine receptor (ligand binding, secondary structure, accessibility of Trp and Cys residues, and aggregation), in plasma membranes as well as during detergent extraction, purification, and reconstitution into artificial lipid bilayers. We found a large loss in thermostability correlating with the loss of the lipid bilayer during membrane solubilization and purification. Thermal unfolding of the 5-hydroxytryptamine receptor occurred in consecutive steps at distinct protein locations. A loss of ligand binding was detected first, followed by formation of different transient low oligomeric states of receptor pentamers, followed by partial unfolding of helical parts of the protein, which finally lead to the formation receptor aggregates. Structural destabilization of the receptor in detergents could be partially reversed by reconstituting the receptor into lipid bilayers. Our results are important because they quantify the stability of LGICs during detergent extraction and purification and can be used to create stabilized receptor proteins for structural and functional studies.  相似文献   

17.
AMPA receptor tetramerization is mediated by Q/R editing   总被引:10,自引:0,他引:10  
Greger IH  Khatri L  Kong X  Ziff EB 《Neuron》2003,40(4):763-774
AMPA-type glutamate receptors (AMPARs) play a major role in excitatory synaptic transmission and plasticity. Channel properties are largely dictated by their composition of the four subunits, GluR1-4 (or A-D). Here we show that AMPAR assembly and subunit stoichiometry are determined by RNA editing in the pore loop. We demonstrate that editing at the GluR2 Q/R site regulates AMPAR assembly at the step of tetramerization. Specifically, edited R subunits are largely unassembled and ER retained, whereas unedited Q subunits readily tetramerize and traffic to synapses. This assembly mechanism restricts the number of the functionally critical R subunits in AMPAR tetramers. Therefore, a single amino acid residue affects channel composition and, in turn, controls ion conduction through the majority of AMPARs in the brain.  相似文献   

18.
Dendritic spines are the primary postsynaptic sites of excitatory neurotransmission in the brain. They exhibit a remarkable morphological variety, ranging from thin protrusions, to stubby shapes, to bulbous mushroom shapes. The remodeling of spines is thought to regulate the strength of the synaptic connection, which depends vitally on the number and the spatial distribution of AMPA-type glutamate receptors (AMPARs). We present numerical and analytical analyses demonstrating that this shape strongly affects AMPAR diffusion. We report a pronounced suppression of the receptor exit rate out of spines with decreasing neck radius. Thus, mushroomlike spines become highly effective at retaining receptors in the spine head. Moreover, we show that the postsynaptic density further enhances receptor trapping, particularly in mushroomlike spines local exocytosis in the spine head, in contrast to release at the base, provides rapid and specific regulatory control of AMPAR concentration at synapses.  相似文献   

19.
AMPA receptors (AMPAR) mediate the majority of fast excitatory neurotransmission in the central nervous system (CNS). Transmembrane AMPAR regulatory proteins (TARPs) have been identified as a novel family of proteins which act as auxiliary subunits of AMPARs to modulate AMPAR trafficking and function. The trafficking of AMPARs to regulate the number of receptors at the synapse plays a key role in various forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Expression of the prototypical TARP, stargazin/TARPgamma2, is ablated in the stargazer mutant mouse, an animal model of absence epilepsy and cerebellar ataxia. Studies on the stargazer mutant mouse have revealed that failure to express TARPgamma2 has widespread effects on the balance of expression of both excitatory (AMPAR) and inhibitory receptors (GABA(A) receptors, GABAR). The understanding of TARP function has implications for the future development of AMPAR potentiators, which have been shown to have therapeutic potential in both psychological and neurological disorders such as schizophrenia, depression and Parkinson's disease.  相似文献   

20.
Activity-dependent changes in the strength of excitatory synapses are a cellular mechanism for the plasticity of neuronal networks that is widely recognized to underlie cognitive functions such as learning and memory. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) are the main transducers of rapid excitatory transmission in the mammalian CNS, and recent discoveries indicate that the mechanisms which regulate AMPARs are more complex than previously thought. This review focuses on recent evidence that alterations to AMPAR functional properties are coupled to their trafficking, cytoskeletal dynamics and local protein synthesis. These relationships offer new insights into the regulation of AMPARs and synaptic strength by cellular signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号